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ABSTRACT

The state-of-the-art recognition of continuous gestures for
control of musical sound by means of machine learning has
two notable constraints. The first is that the system needs
to be trained with individual example gestures, the starting
and ending points of which need to be well defined. The sec-
ond constraint is time required for the system to recognise
that a gesture has occurred, which may prevent the quick
action that musical performance typically requires. This
article describes how a method for unsupervised segmenta-
tion of gestures, may be used for delayed gestural control
of a musical system. The system allows a user to perform
without explicitly indicating the starting and ending of ges-
tures in order to train the machine learning algorithm. To
demonstrate the feasibility of the system, an apparatus for
control of musical sound was devised incorporating the time
required by the process into the interaction paradigm. The
unsupervised automatic segmentation method and the con-
cept of delayed control are further proposed to be exploited
in the design and implementation of systems that facili-
tate seamless human-machine musical interaction without
the need for quick response time, for example when using
broad motion of the human body.
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CCS Concepts

•Human→ centered computing; •Computing method-
ologies → Machine learning; •Information systems
→ Music retrieval; •Applied computing → Performing
arts;

1. INTRODUCTION

Musical instruments are usually designed to be controlled
with fine movements of hands and fingers, as they afford
precision and speed. These qualities are often described as
the foundations of responsiveness, believed to be indispens-
able for musical expression. The instrument thus becomes
an extension of the human body.
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These ideas have permeated into the design of digital
musical instruments (DMI) [15], and a response time ap-
proaching zero has become a standard goal [23, 9, 10]. The
challenge extends to the design of DMI that recognise ges-
tures “in the air”, using machine learning techniques. For
example, a musician wears, holds or stands in front of, a de-
vice that may sense position (i.e., static gestures) or motion
(i.e., continuous gestures). The musician makes a gesture in
free space: describes a circle with the head, wiggles a hand,
or stands in a particular pose. The DMI learns these ges-
tures in a process called “training”, and it recognises them
when they are performed. The recognition of a gesture can
be mapped to a musical action, such as triggering a sound,
activating an effect, etc. (e.g., [8]).

Two algorithms and variations of them have been exten-
sively used to recognise continuous gestures, regardless of
the sensing technology: Dynamic Time Warping (DTW) [7]
and Hidden Markov Models (HMM) [1]. Both estimate the
likelihood that a gesture being performed corresponds to a
gesture that has been learned in the training. However, this
likelihood may change while the gesture is executed, there-
fore recognition is only reliable after the gesture has been
completed. This adds time to the recognition, arguably re-
ducing responsiveness. In addition, training requires the
beginning and ending of gestures to be explicit.

Given a stream of data from a sensor, individual gestures
may be extracted by a process called “segmentation”, in
which the start and ending points of gestures are identified.
For example, when training the algorithm the user presses
a button (e.g., [14]) or makes pauses between gestures (e.g.,
[16]). While this constraint has not prevented the use of
the algorithms mentioned above in DMI, the ability of a
machine to recognise and learn gestures without explicit
training would open new avenues for human-machine mu-
sical interaction. Furthermore, the time required for the
recognition of continuous gestures might not be a disad-
vantage if when designing a DMI we don’t hold the same
standards of responsiveness as for the human voice or other
non-electronic instruments. Consider that digital technolo-
gies have greatly expanded our possibilities for control of
sound, far beyond what is possible with the human voice or
with non-electronic devices. Why should we hold ourselves
from exploring forms of gestural control that are not quick
and precise, but instead slow and imprecise (i.e., delayed de-
tection, perception, action, by the user and the automatic
system) such as broad motion of the human body?

This article describes a system that was devised as a proof
of concept towards exploring the feasibility of unsupervised
learning of patterns in a continuous input signal, in a mu-
sical application that doesn’t require quick responsiveness.
The system is conceptually a musical instrument in a broad
sense, for it essentially allows a user to control sound.



2. ONLINE UNSUPERVISED TEMPORAL

SEGMENTATION

A signal may be segmented using the algorithm described
by Foote [5], which has seen application in segmentation of
musical audio and video [6, 21], dancing motion captured
by an accelerometer [13], and daily activity recorded by
wearable accelerometers [12, 17]. Its meta-parameters can
be adjusted to detect boundaries of segments at different
timescales. The cited sources described the use of the algo-
rithm on recorded data. Conversely, Schätti [18] described
an online version of the algorithm, that detects boundaries
of audio data while the data is being produced. Later Men-
doza [11] reported a study in which the algorithm’s seg-
mentation of dancing motion captured by a hand-held ac-
celerometer, was compared to manual segmentation of video
recordings of the dancing. The meta-parameters were opti-
mised for each accelerometry recording. The music used for
dancing and the person doing the manual segmentation were
the main factors affecting the quality of computed segmen-
tation. These results suggest that the algorithm is suitable
for gestural control of a DMI, albeit its meta-parameters
might need contextual adjustment. Figure 1 succinctly il-
lustrates the online segmentation procedure. It uses the
same principle of buffering and computation of a local dis-
tance matrix, as described by Schätti [18] and Mendoza [11].

3. PROOF OF CONCEPT

3.1 Hardware

A polystyrene ball having 12 cm. of diameter was cut in half
and the interior was carved to fit a Myo armband controller
(Figure 2). The Myo was originally designed by Thalmic
Labs to be worn on the forearm. It has several sensors, of
which only its triaxial accelerometer was used in the system
described here. The two halves of the ball are put together
restoring the spherical shape, but it can be easily disassem-
bled to recharge the battery of the Myo. The data from the
sensors is broadcast in real time using the Bluetooth Low-
Energy (BLE) specification. The BLE signal is captured by
a computer nearby, and a piece of software written by Ro-
drigo Schramm1 outputs the data in Open Sound Control
(OSC) format to a User Datagram Protocol (UDP) port,
where it can be accessed by other software. This controller
was used for its convenience, as it was available to the re-
searcher along with the software to get the data in real time.

3.2 Software

The segmentation procedure described in section 2 can de-
tect in real-time boundaries between gestures performed
with the hand-held controller continuously, without indi-
cating their start or end. The effect of its meta-parameters
are as follows: n sets the timescale of gestures to detect,
nfilt sets the smoothness of the novelty score, θ is a factor
of the maximum novelty score and sets a threshold below
which novelty peaks are rejected (e.g., noise). A further
meta-parameter was incorporated to prevent detection of
segments of less than a given length nmin, such as tran-
sitions between gestures. The segmentation procedure, as

1See [22]. Software available: https://github.com/federicoVi
si/KineToolbox/blob/master/input%2BML/DaemonMYO

The system is conceptually a musical instrument in a broad
sense, for it essentially allows a user to control sound.

One key quality of this instrument and the innovation pre-
sented here, is that it segments gestures without the need of
explicitly indicating their starting and ending points. These
gestures may trigger actions that control sound. However,
the detection of gestures needs some time to occur. It might
be just a fraction of a second, but it is enough to be per-
ceived as not instantaneous. This would normally be con-
sidered a disadvantage, but in the context of this study it
is not. Furthermore, the capability of detecting gestures
without explicit training is proposed as a resource to design
musical instruments that may seamlessly interact with their
users, acting more as agents than as tools. The next sec-
tion presents a description of the algorithm that segments
gestures without explicit indication, a process called unsu-
pervised temporal segmentation. Then the development of
the proof-of-concept instrument is described, followed by a
discussion with suggestions for further research.

2. ONLINE UNSUPERVISED TEMPORAL

SEGMENTATION
A signal may be segmented using the algorithm described
by Foote [5]. That algorithm has seen application in seg-
mentation of musical audio and video [6, 21]. Also, it has
been tested for segmentation of dancing motion captured by
an accelerometer [13] and daily activity recorded by wear-
able devices equipped with accelerometers [12, 17]. The pa-
rameters of the algorithm can be adjusted to detect bound-
aries of segments (also known as change-points) at di↵erent
timescales. The cited sources had described the use of the
algorithm on recorded data. Conversely, Schätti [18] de-
scribed an online version of the algorithm which detects
boundaries of audio data while the data is being produced.
Later Mendoza [11] reported perceptual tests of the algo-
rithm applied to segmentation of dancing motion captured
by a hand-held device containing an accelerometer. The
latter suggests that the algorithm is suitable for gestural
control. While the interested reader may consult the cited
sources for detailed descriptions, below a brief description is
provided of the implementation of the online segmentation
algorithm for the system described in this article.

Firstly, a two-dimension kernel K is produced by the Kro-
necker product of a checkerboard matrix and an only-ones
matrix of width n. Then K is tapered by multiplying it
element-wise with a two-dimensional Gaussian. For conve-
nience, K is computed only once and stored in memory. The
input to the real-time segmentation algorithm is a stream
M of triaxial accelerometry data points, herein referred to
as “frames” F = (fx, fy, fz) sampled at regular intervals. A
window of n frames is stored in a bu↵er Wnov (Figure 1a).
For each incoming frame the last frame in the bu↵er is re-
moved while the current frame is stacked in the first posi-
tion, and distance matrix D 2 Rn⇥n is computed for Wnov

(Figure 1b). For this study Euclidean and City Block dis-
tances were tested with no practical di↵erence, although
the latter was preferred because it is computationally faster
as it doesn’t compute the square root. At the arrival of
each data frame F , the inner product between K and D
is computed, resulting in a new point in novelty score N
(Figure 1c).

Distance matrix D is symmetric, therefore only one of
its triangles over or under the diagonal is relevant and it
may be represented as a vector. Matrix D is initialized
with allocation values (e.g., zeros). As data frames arrive,
the distance between the current frame and all the other
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Figure 1: Online temporal segmentation. Horizontal axes
represent time. (a) is triaxial accelerometer data. (b) is self-
similarity matrix D of data in the bu↵er Wnov, where lighter
shades represent more distance. (c) is novelty score N , where
the vertical dotted line indicates the current result. (d) is the
smoothed novelty score N 0, where ✓ is a threshold and the
point in a circle is the selected peak indicating a boundary.
Note that this visualisation shows N and N 0 aligned in time,
but in practice there will be a lag due to the filter and the
test for a peak.

frames in the bu↵er is computed. At the arrival of each
new frame, the inner product of the upper or lower trian-
gle of D and the corresponding triangle of K is computed
resulting in a novelty value. After this is done and before
computing the next novelty value, the values within D are
shifted, discarding the distances between the oldest frame
and the newer ones. Then, a low-pass filter is applied to
N by convolving it with a Gaussian window of length nfilt,
resulting in a smooth novelty score N 0. If the current nov-
elty score value is a peak over a threshold ✓, it is deemed to
be a segmentation boundary (Figure 1d). The relevance of
segmentation boundaries may be adjusted with parameter ✓
(e.g., to prevent segmentation of noise) while the timescale
of the segments is adjusted with parameter n. In the imple-
mentation described here, N 0 is rescaled to {0, 1} when a
new maximum occurs, and ✓ is a factor. The novelty peak
is located at the center of the kernel and the filter window,
and the test for a peak requires only three frames. There-
fore, the lag for the whole procedure is (n + nfilt)/2 + 3
frames.

3. PROOF OF CONCEPT

3.1 Hardware
A polystyrene ball having 12 cm. of diameter was cut in half
and the interior was carved to fit a Myo armband controller
(Figure 2). The Myo was originally designed by Thalmic
Labs to be worn on the forearm. It has electromyographic
sensors to detect muscle contraction, a triaxial accelerom-
eter, a triaxial gyroscope, and a magnetometer measuring
on the horizontal plane when the armband is worn on the
forearm in horizontal position. The two halves of the ball

Figure 1: Online temporal segmentation. Horizon-
tal axes represent time. (a) is accelerometer data
composed of triaxial frames. (b) is a distance ma-
trix of the data in the buffer having a length of
n frames. Lighter shades represent more distance.
(c) is a novelty score resulting from the correla-
tion of the distance matrix with a gaussian-tapered
checkerboard kernel. The vertical dotted line indi-
cates the current result. (d) is the novelty score
after smoothed by a gaussian filter of length nfilt,
where θ is a threshold and the point in a circle is the
selected peak indicating a boundary. Note that this
visualisation shows (c) and (d) aligned in time, but
in practice there will be a lag because of the filter.
The total lag of the process is (n + nfilt)/2 frames
plus 3 frames for peak detection.

Figure 2: Left – Carved open polystyrene ball with
the Myo armband in it. Right – Closed ball.

well as the musical application and its graphical user in-
terface, were implemented in the Pure Data programming
environment, which receives the accelerometry data using
OSC as described in the previous subsection. The software
is free and available (see Appendix).

The detected segments, each being a gesture, may be
fed to a machine-learning process for training (i.e., ges-
ture learning) and classification (i.e., gesture recognition).
The DTW algorithm was chosen for this purpose, as it is
available in the easy-to-use software Wekinator [4, 3], which
communicates with Pure Data using OSC over a UDP port.
However, another algorithm could be used (e.g., HMM). As
with segmentation, the result of the recognition has lag due
to buffering and latency due to logical processing.

https://github.com/federicoVisi/KineToolbox/blob/master/input%2BML/DaemonMYO
https://github.com/federicoVisi/KineToolbox/blob/master/input%2BML/DaemonMYO
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The segmentation and machine-learning processes are in-
corporated into a system that allows the user to reorder
sections of an audio file. The use of the system has two
stages: Cut and Perform. In the Cut stage (Figure 3) the
audio file is played in its entirety while the user performs
distinct gestures. The boundaries between gestures are de-
tected in real time by the segmentation process and their
time location is stored and labelled with a sequential in-
dex. The segments are fed as individual training examples
to the gesture learning process. Also, in the graphical user
interface a green vertical line is placed over a plot of the
accelerometry signal, to indicate a successfully segmented
gesture (Figure 5).

In the Perform stage (Figure 4) the gesture recognition
process is continuously comparing the incoming accelerom-
etry signal, to all the segments previously stored in the Cut
stage. The segment that is closest to a stored one is deemed
a match and its corresponding audio section plays in a loop.
If a gesture different than the current is recognised, then the
corresponding audio section will be played once the current
audio section reaches its end.

3.3 Testing

During the implementation of the system, the author of
this article conducted iterative testing using an upbeat elec-
tronic dance music piece, as it has been observed that this
kind of music stimulates bodily motion [2]. Static gestures
achieved by only changing the ball’s orientation, and ges-
tures involving repetitive motion, were well segmented and
recognised. Figure 6 shows a sequence of gestures that
worked well with the following setting of meta-parameters,
which was kept throughout the testing: n = 80, nmin = 28,
and nfilt = 24, at a sampling rate of 20 frames per second
yielding lag = 55 frames (0.4 seconds, not including logical
processing latency), and θ = 0.03. Parameters of the DTW
process were also adjusted, but are not discussed as that
algorithm is well documented [7, 3]. Since the ball is fully
symmetrical, letters (A to F) were put on the orthogonal
points to aid visually in manipulation. Later a small ar-
row was put next to each letter pointing to the next one
(Figure 2, Right).

Additionally, extraction of features (e.g., amplitude, zero-
crossings) from the triaxial accelerometry signal and its
magnitude, was implemented. They did not improve seg-
mentation but, because of being windowed processes, they
did increase lag (i.e., frames needed for computation) and
computation cost (i.e., logical processing). Therefore, devel-

opment and testing continued using only raw acceleration,
to demonstrate what is possible without using extracted
features.

When a functional version was completed, researchers and
students of Musicology, Music Therapy and Music Educa-
tion at the University of Jyväskylä were invited to evaluate
the functionality of the system. With this group the follow-
ing protocol was developed:

1. The researcher demonstrates the task comprising Cut
and Perform stages, using the upbeat electronic dance mu-
sic piece and the tested gestures sequence. The enclosed
rectangle shown in Figure 6 is is displayed on a paper.

2. The participant is invited to do the task. If in the
Cut stage not all gestures were segmented successfully, the
participant is invited to repeat the Cut, as many times as
they want. Then, they are invited to try the Perform stage.

3. The participant is invited to freely improvise and/or
to use another piece of music.

4. The participant is invited and encouraged to express
their opinion on the experience. The researcher shall take
observational notes such as number of gestures correctly
segmented in a trial, comments and ideas expressed by and
discussed with the participant, and if a new gesture is dis-
covered.

The protocol described above was incorporated to a 7-
hour presentation in an outreach event at the University
of Jyväskylä. The following data was collected of 23 par-
ticipants: age, gender, number of gestures successfully seg-
mented consecutively from the first, and observations. Fur-
ther notes were taken of more more visitors. All partici-
pants used the upbeat electronic dance music, except one
discarded for homogeneity. 17 participants (10 female, 7
male) performed the task as intended. Only six tried a sec-
ond time, improving segmentation (see Figure 7). The me-
dians of correctly segmented gestures was 4 for first time,
6 for second time and 5 for maxima. No correlation be-
tween number of correct segments and age or gender was
observed. Most participants under 10 years old could not
correctly perform all gestures, albeit they could successfully
use the system by only changing the orientation of the ball.

3.4 Overall Assessment

Any set of orientations being different enough will work,
but the 6 orthogonal orientations work flawlessly. Also, any
combination and variation of repeated movements along the
3 orthogonal axes of the ball will work well. Sudden and
energetic movements work best, as they are better measured
by the accelerometer. Smooth movements are less likely
to be detected by the system. Participants discovered a
variety of gestures beyond those in the task. One of them
is the “baby rocking”, consisting in holding the ball with
two hands and moving it describing an upwards concave
curve. Other semi-circular and circular motions, and “8”
figures were successfully detected, inasmuch as the speed,
and therefore radial acceleration, was powerful enough to
produce a novelty score above the set threshold (θ).

If the transition from one gesture to the next is slow
enough to have a duration equal or greater than nmin (min-
imum duration for gestures to be detected), the transition
will be identified as a segment. In the Perform stage the
system might get stuck looping these very short segments,
due to the characteristics of the DTW algorithm (i.e., com-
putation time is proportional to the length of the segment,
parameter sensitivity). However, interestingly, two partic-
ipants mentioned that they liked the result. One of them
referred to it as “a DJ effect”. Another participant explored



Figure 5: Graphical user interface

order	 orienta*on	 gesture	 descrip*on	

1	 A	 ·	 do	nothing	

rotate	le0	

2	 B	 ·	 do	nothing	

rotate	forward	

3	 C	 ·	 do	nothing	

rotate	le0	

4	 D	 move	up-down	

rotate	forward	

5	 E	 hit	right	

rotate	le0	

6	 F	 hit	twice		
to	each	side	

·	 do	nothing	

7	 F	 ·	 do	nothing	

…	

Figure 6: Segmentation task

the possibility of not having to look at the ball when ma-
nipulating it. A discussion ensued leading to conclude that,
since the ball is fully symmetric, it is not possible to be
aware of its orientation without looking at it.

The task was challenging to different extents. Some par-
ticipants wanted to try again to improve the number of
correctly segmented gestures. All participants showed en-
gagement and enjoyment. However, it is to expect that
researchers and students have interest as the experience is
related to their profession and studies. Likewise, visitors
at the outreach event most probably attended because of
curiosity.

4. DISCUSSION AND FUTURE WORK

The system described in this article demonstrates the fea-
sibility of unsupervised learning of patterns in a continuous
input signal, for gestural control, within a musical appli-
cation. The process ineluctably produces a lagged response
and therefore it is not suitable for the execution of fast notes

 8  9 13 15 18 22 28 28 31 31 32 34 34 39 42 52 58
age

0

1

2

3

4

5

6

7

co
rre

ct
ly

 s
eg

m
en

te
d

Figure 7: Data collected at the outreach event. Sec-
ond trials are shown in darker shade.

Figure 8: ”Boot” form with rotational asymmetry.
Left – lateral view. Right – zenithal view.

or rhythmic patterns. Nonetheless, the proposed musical
application conforms to this constraint, supporting the con-
cept of delayed control of musical sound. Participants of the
assessment tended to regard the task as a challenge, which
in combination with the discovery of new meaningful ges-
tures, and the sense-making of the constraints, turned the
experience into a ludic one. The system appears promising,
offering opportunities for further research:

I. The reported assessment used recorded music, but any
audio file may be used, and the meta-parameters may be
tweaked for further exploration that may lead to unexpected
yet interesting results.

II. The hand-held device will benefit from having rota-
tional asymmetry, such that there is no need of looking at
it for manipulation (Figure 8).

III. Using the raw accelerometry signal has established
a baseline. Future research could evaluate the impact of
features extracted from the raw signal. The computation of
such features will impact the overall latency (lag plus logical
processing), and the detection of novelty (and therefore the
setting of meta-parameters) because of the information that
the features carry.

IV. Incorporation of more sensors or sensing technologies
other than accelerometry. Besides, several sensors may be
used by more than one person simultaneously, as a group
activity (e.g., [19, 20]).



V. Implementation of online multigranular segmentation,
meaning the detection of gestural boundaries at different
timescales.

VI. Current limitations to achieve III, IV, and V, are
algorithmic complexity, processing power and software effi-
ciency. Solutions may include low-level programming (pos-
sibly embedded software) and faster hardware (possibly par-
allel computing of several features and timescales).

VII. The setting of meta-parameters generalised well,
which is unexpected as perceptual evaluations have sug-
gested the adjustment of meta-parameters for each user [11].
A different setting might be needed when using other con-
figurations of hardware, software, music, user, etc. Future
research may assess the effects of meta-parameters on seg-
mentation and user experience.

VIII. The methods described in this article have poten-
tial beyond the described application, in which the online
segmentation procedure only contributes to display on the
screen an indication when a gesture has been successfully
segmented in the Cut stage. This allows the user, for exam-
ple, to stop the Cut and restart if a gesture change was not
detected. While this might be an advantage to the user, the
online segmentation capability and its further possibilities
for near-real-time interaction could be exploited more. For
example, a musical system (e.g., a DMI, a sonic installa-
tion, a sonification) may learn gestures as they occur. This
may be incorporated to interactive systems where both the
user and the system discover and learn gestures at the same
time, leading to a seamless process of human-machine mu-
sical interaction.

5. ETHICAL STANDARDS

All participants gave verbal informed consent for the use
of their anonymous collected data, following the research
ethics guidelines by the University of Jyväskylä.
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Software and documentation: https://gitlab.jyu.fi/juigmend
/temporal segmentation gestural control

https://gitlab.jyu.fi/juigmend/temporal_segmentation_gestural_control
https://gitlab.jyu.fi/juigmend/temporal_segmentation_gestural_control

