
Serge Modular Archive Instrument (SMAI): Bridging
Skeuomorphic & Machine Learning Enabled Interfaces

Ted Moore
∗

New Haven, CT
ted@tedmooremusic.com

Jean Brazeau
†

Simon Fraser University
jean_brazeau@sfu.ca

ABSTRACT

The Serge Modular Archive Instrument (SMAI) is a sample-
based computer emulation of selected patches on the vintage
Serge Modular instrument that is housed at Simon Fraser
University. Hours of recorded audio created by specified pa-
rameter combinations have been analyzed using audio de-
scriptors and machine learning algorithms in the FluCoMa
toolkit. Sound is controlled via (1) a machine learning di-
mensionality reduction plot showing all the recorded sam-
ples and/or (2) a skeuomorphic graphical user interface of
the patches used to record the sounds. Flexible MIDI and
OSC control of the software enables custom modulation and
performance of this archive from outside the software. Dif-
fering from many software synthesis-based emulations, the
SMAI aims to capture and archive the idiosyncrasies of vin-
tage hardware as digital audio samples; compare and con-
trast skeuomorphic and machine learning enabled modes of
exploring vintage sounds; and create a flexible instrument
for creatively performing this archive.
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CCS Concepts

•Applied computing → Performing arts; •Human-centered
computing → Visualization systems and tools; •Information
systems → Multimedia and multimodal retrieval;

1. INTRODUCTION

This paper introduces the Serge Modular Archive Instru-
ment (SMAI), a sample-based computer emulation of se-
lected patches on the vintage Serge Modular Music Sys-
tem instrument that is housed at Simon Fraser University.

∗Audio Descriptor Analysis, Machine Learning Analysis, &
Application Code.
†Synthesis Design & Graphic Design

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

Figure 1: Two-dimensional plot for navigating samples in the
Serge Modular Archive Instrument.

SMAI is designed to compare and contrast two strategies
for navigating recorded audio samples in a multi-gigabyte
corpus: (1) a skeuomorphic interface modeled on the orig-
inal Serge Modular Music System [16] and (2) an audio
analysis and machine learning based three dimensional plot
of sound slices. In this paper, we describe the process of
creating the dataset of audio, audio analyses, and data rep-
resentations and how one uses the SMAI to explore and
perform this archive in various ways. Future research will
include qualitative comparisons of users’ musical expressive-
ness with each interface [20]. for Download SMAI from
the GitHub Repo at https://github.com/tedmoore/Serge-
Modular-Archive-Instrument.

There are many software synthesizers that emulate ana-
log synthesizer sounds, including the sounds of vintage Serge
Modular systems [8, 4, 6, 7, 1]. Many also include skeuomor-
phic interfaces [2]. While some draw on recorded waveta-
bles to approximate the idiosyncratic waveforms of analog
systems [1], SMAI is unique in that it draws on many giga-
bytes of recorded audio, not for wavetable navigation, but
as buffer playback to produce the sound of the emulated
analog system.

Because of the continual evolution electronic music tech-
nology, there’s a strong need for reliable and robust preser-



vation and archiving practices for electronic music reper-
toire and techniques. [10] The multimodal ways we engage
electronic sounds (recording, playing synthesizing, storing,
teaching, learning, etc.) requires multimodal systems for
accessing and making archives useful [3]. SMAI provides
a strategy for both preservation and multimodal access by
creating a unique archival instrument that not only archives
material but offers multimodal exploration and performance
of the archived instrumental sounds via skeuomorphic and
data visualization interfaces.

While others have used audio descriptor analysis and di-
mensionality reduction to organize recorded audio in lower
dimensional space for sonic navigation and performance [5,
17, 22, 13], SMAI is not created from a small, user-specified
corpus of sounds, but rather a multi-gigabyte corpus that
approximates the entire sonic space of a synthesizer patch.
Additionally, comparing the dimensionally reduced plot with
the skeuomorph allows one to contrast the two control strate-
gies, comparing each for affordances of musical expression.

2. DATASET CREATION

Creating the datasets (audio recordings, audio analyses, and
data representations) is done by the authors and therefore
is not part of the users’ experience. These datasets are pre-
sented to the users as “Patch Folders” (see section 2.4) that
one can download and load into the SMAI software. This
section describes the how the authors create these datasets.

2.1 Recording

For each patch created, four modulatable control voltage
parameters were chosen on the Serge so each could be pro-
grammatically set to specific values (as voltage) via the Ex-
pert Sleepers ES-9 eurorack module [19]. A SuperCollider
[11] script programmatically stepped through all possible
combinations of the four parameters. For each of the four
parameters a minimum and maximum voltage (potentially
ranging from -10 volts to +10 volts as output by the ES-9;
specified in SuperCollider from -1 to 1) and a number of
steps for dividing up the voltage range (usually 10-15) is
selected. We often choose a resolution of 15 steps for each
parameter, which results in 50,625 (154) possible parameter
combinations.1 A voltage range smaller than -10 to +10 was
used in cases where a certain parameter was mostly inaudi-
ble in a given range such as an oscillator frequency above the
range of human hearing. After each parameter combination
is sent to the Serge, a specified duration of time is waited
for the recording to capture audio. Each of the 50,625 pa-
rameter combinations is recorded for one second, creating
over 14 hours of recorded audio (this had to be broken up
into multiple wav files for proper storage and transmission).
Due to the need to balance audio quality with file size we
chose to store these files with a sample rate of 44,100 Hz
and bit depth of 162, which resulted in over 4 gigabytes of
audio. During this process, the recording settings, num-
ber of steps, voltage ranges, and recording time were stored

1For explanation purposes, this paper describes the specifics
of one dataset, or “Patch”. Other datasets have slightly
different settings.
2The recordings were originally made at a sample rate of
96,000 Hz and a bit depth of 24. While these much larger
files become infeasible for easily sharing across the inter-
net or storing in a computer’s memory for random access
by SMAI, we have kept these files for potential future use
and/or research by ourselves or others.

in a log file; the parameter combinations were stored as a
CSV file; and a log of the patch cables’ connections were all
stored for future use.

2.2 Audio Analysis

Using the hours of recorded audio, audio analyses were con-
ducted in non-real-time on each parameter combination’s
one second of audio. The audio analysis and machine learn-
ing analyses were achieved with the FluCoMa Toolkit [21] in
SuperCollider [11]. Each one second of audio was analyzed
for spectral centroid, spectral spread, spectral skewness,
spectral kurtosis, spectral rolloff, spectral flatness, spec-
tral crest, pitch, pitch confidence, loudness, true peak, and
40 mel-frequency cepstral coefficients (including coefficient
zero). Each analysis used a window size and FFT size of
1024 samples, with a hop size of 512 samples. The Flu-
CoMa analysis returns a time series of each of these audio
descriptors across the duration of the one second sound slice
(one descriptor value per FFT frame). In order to summa-
rize the time series of descriptors, a statistical summary was
conducted on each, returning the mean, standard deviation,
skewness, kurtosis, minimum, median, and maximum val-
ues for each descriptor. These seven statistics for each of
the 51 descriptors’ time series was used as the raw vector
(of 357 dimensions) for each sound slice analyzed.

2.3 Dimensionality Reduction with PCA and

UMAP

After performing the audio analyses, the sound slices were
represented as 50,625 points in 357 dimensional space. Di-
mensionality reduction algorithms were used to organize
these sound slices into two dimensional space for plotting
and navigating in the SMAI software. Because of the large
variance in ranges of the different audio descriptors (e.g.,
spectral centroid in hertz from 20 to 20,000 while pitch
confidence ranges between 0 and 1) it was important to
first scale the dataset using standardization so each dimen-
sion would have a mean of 0 and standard deviation of 1.
This ensures that each dimension will be weighted relatively
equally in the distance computations that follow.3 Prin-
cipal Component Analysis was first used with the goal of
removing any noise or redundancy in the dataset. A tar-
get of preserving 95% of the variance was set, which re-
sulted in keeping the first 226 principal components, reduc-
ing the size of the dataset by about 37%. Next, the machine
learning dimensionality reduction algorithm Uniform Man-
ifold Approximation and Projection (UMAP) [12] was used
to reduce the 226 principal components down to two di-
mensions for plotting in SMAI. Various UMAPs parameters
were tested to find a two dimensional projection that felt
musical and useful to the authors.4 Future research should
include a qualitative assessment of musicality by more users
with more varied UMAP parameters.

2.4 “Patch Folder” Format
3Because MFCCs are 40 of the 51 audio descriptors, their
timbral descriptions constitute the majority of the distance
computation between points. The authors felt that this
weighting was not inappropriate. Future experiments might
vary weights between different kinds of analyses.
4The resulting parameters used were number of neighbors
= 2, minimum distance = 1, iterations = 200, learning rate
= 0.1.



After the audio of the parameter combinations has been
recorded, the audio analysis complete, and the data reduced
to two dimensions, all of these resources are placed in a
“Patch Folder” that a user can select to load when booting
up SMAI. So far, four “Patch Folders” have been created
from four different analog Serge Modular patches. The con-
tents of this folder include: (1) wav audio files, (2) a csv

file containing audio analyses and parameter positions for
each sound slice (see section 3 for more), (3) a json file con-
taining some information about how the patch was created
and how to display the skeuomorph, and (4) a png file to
overlay on the skeuomorph showing a mock up of the cable
connections used during recording.

3. SOUND NAVIGATION

Once the user opens the software and selects which patch to
load, the audio samples can then be accessed in two ways:
(1) a skeuomorphic interface of the original Serge Modu-
lar Music System or (2) a three-dimensional plot displaying
sound slices as points.

3.1 Skeuomorphic Interface

In order to provide a sense of what kind of analog patch
produced the sounds being heard, a skeuomorphic interface
allows users to see what interconnections were used and ad-
just virtual knobs to control the sound. While the effective-
ness and learnability of skeuomorphic interfaces have been
shown to strongly rely on users’ previous experiences [14,
15], the authors feel the SMAI skeuomorph strengthens its
use as an archival representation of the Serge. on the SMAI,
a red glow (see figure 3.1) shows which knobs are adjustable,
while the rest do not respond to interaction. Each time one
of these knobs is moved, a KDTree [9] is used to find the
nearest neighbor of the current parameter settings within
the dataset of sound slices loaded (these parameter settings
are loaded through the csv file) and loops the correspond-
ing one second sample of audio. The three-dimensional plot
(section 3.2) shows the position of the slice being heard.

3.2 Three-Dimensional Plot

A three-dimensional plot (x and y, with color as a third
dimension) allows for a more spatial and similarity-based
interface for accessing the sounds slices. Each time the
mouse is clicked or dragged on the plot a KDTree [9] is
used to find the nearest point to the current mouse posi-
tion (only the x and y dimensions are considered). The one
second audio recording of the nearest point is then looped
and the original parameter combination is displayed via the
knobs on the skeuomorph. The three-dimensional plot can
display, on any axis, various audio descriptors representing
the sound slices (pitch, pitch confidence, loudness, spectral
centroid, and spectral flatness, or either of the two UMAP
dimensions). This allows for viewing, navigating, and per-
forming the sound slices from multiple angles. Users may
find different combinations of axes to be more musically
intuitive (e.g., spectral centroid and loudness as a spectro-
gram), to reveal clusters of similar sounds (e.g., UMAP), or
to be more performable via MIDI or OSC (see section 3.4).

3.3 Touch Activated Keyboard Sequencer

Figure 2: Skeuomorphic interface for controlling samples in
the Serge Modular Archive Instrument.

Below the three-dimensional plot is a set of controls for the
plot itself, four knobs that mirror the four knobs on the
Serge Modular skeuomorph, and a skeuomorph of a Serge
Touch Activated Keyboard Sequencer. This sequencer al-
lows the user to store specific sound slices in one of the six-
teen steps and then recall them by clicking on a given step
(similar to the original analog device). To store a desired
sound the user first uses the three-dimensional plot or the
Serge skeuomorphic interface to navigate to a sound, then
presses the digital button labeled “Save Position to Touch-
pad”, and next clicks on which of the sixteen steps in which
it should be stored. While this sequencer does not have a
tempo or step advancement control, it is controllable via
MIDI and OSC. The benefit of having 16 settable presets in
the SMAI is that one can natively select and store 16 of the
tens of thousands of possible sounds with a interactive GUI
and then trigger those 16 sounds programmatically from
a different software which the authors believe is preferable
to asking users to specify one of the tens of thousands of
sounds from outside the SMAI.

3.4 MIDI and OSC Control

Rather than add a limited set of modulation sources, such
as LFOs, to the SMAI we decided to maximize the control-
lability of the software by opening up all the parameters for
control via MIDI and OSC. Users are able to design their
own LFOs, gestural mappings, sequencing strategies, and
other performative techniques in exiting tools such as Max,
SuperCollider, or Pure Data and send control information
to the SMAI. See tables 1 and 2 for the relevant MIDI Mes-
sages and OSC commands.

Additionally, a MIDI learn functionality allows for assign-
ing Control Change numbers (other than the reserved ones
found in table 1) to control plot navigation (x and y axis)
and the four skeuomorphic knobs.5 This allows a user to

5The user can specify which connected MIDI controller to



quickly make and control sound with physical knobs on any
attached MIDI controller.

Action MIDI Args
Skeuomorphic Param 1 CC 1 0-127
Skeuomorphic Param 2 CC 2 0-127
Skeuomorphic Param 3 CC 3 0-127
Skeuomorphic Param 4 CC 4 0-127
X Position on Plot CC 5 0-127
Y Position on Plot CC 6 0-127
Set X Axis CC 101 0-6
Set Y Axis CC 102 0-6
Set Color “Axis” CC 103 0-6
Step Seq. Step “n” Note On note 59 + n n/a
Step Seq. Advance Note On note 100 n/a

Table 1: Controlling the SMAI with MIDI.

Action OSC Args
Skeuomorphic Param 1 /param1 0-1 (float)
Skeuomorphic Param 2 /param2 0-1 (float)
Skeuomorphic Param 3 /param3 0-1 (float)
Skeuomorphic Param 4 /param4 0-1 (float)
X Position on Plot /x 0-1 (float)
Y Position on Plot /y 0-1 (float)
Set X Axis /x-axis 0-6 (int)
Set Y Axis /y-axis 0-6 (int)
Set Color “Axis” /color-axis 0-6 (int)
Step Seq. Step “n” /step-seq n (int)
Step Seq. Advance /step-seq-advance n/a

Table 2: Controlling the SMAI with OSC.

3.5 Audio Playback

Looping the one second sound slice is executed with a 50
millisecond fade in and fade out. The next loop starts to
fade in when the previous begins fading out. When a new
sound slice is selected to be heard, either with the skeuo-
morphic controls or the two-dimensional plot, the previous
slice begins fading out at the same time the chosen slice be-
gins fading in. This sample cross-fading strategy allows for
convincing and fluid movement between sound slices that
approximates the sound of turning a knob on an analog
system.

4. FUTURE RESEARCH

This paper introduces the design, implementation, and con-
trol strategies of SMAI. Future research should include qual-
itative assessments comparing users’ experiences of musical
expressiveness with SMAI’s two control systems: the skeuo-
morphic control and the machine learning enabled three di-
mensional plot. The authors hope that the design choices of
this software can lead to more understanding of the musical
differences between these two control design paradigms.

Future software improvements to SMAI might include (1)
using flac files for smaller audio file sizes, (2) a custom file
type contains all the elements in a ‘patch’ folder would make

use with the SMAI by hitting m (for “MIDI”).

for a simpler user experience, and (3) investigating stochas-
tic granulation strategies may help prevent the one second
sounds slices from being clearly perceived as a loop. Cur-
rently there is no way to natively record the sounds made
by SMAI, however it is possible to use the “loopback” func-
tionality found in may audio hardware devices, or with an
internal software audio device, such as BlackHole [18]. Fu-
ture versions may include a loudness threshold to remove
very quiet slices from the dataset before performing the di-
mensionality reduction. This would ensure that the inaudi-
ble sound slices do not end up in the UMAP plot, where
they currently take up a lot of space. These slices could
still appear in the plot when a non-UMAP dimension is se-
lected for either the x or y axis and could still be reached
via the skeuomorphic interface.

The authors hope that the design choices and control
paradigms of SMAI can be applied to the preservation,
archiving, and performing of other vintage analog synthe-
sizer systems as well. Aside from the Serge-specific skeuo-
morphic designs, the technical pipeline and system sug-
gested here could be adapted for any large corpus of archival
synthesizer recordings.

5. ETHICS STATEMENT

The authors have made efforts to make the artistic and re-
search use of SMAI as accessible and inclusive as possible.
All of the code is open source and available on GitHub un-
der the BSD-3-Clause license. All of the sound files that are
used with the software are licensed under Creative Com-
mons 4.0 International. Additionally, all of the software
dependencies are open source and can also be found on
GitHub. Currently SMAI is only available for Mac. Fu-
ture improvements should include a development pipeline
that enables compiling for more operating systems.

All of the technical work done on SMAI was performed on
MacBook Pro laptops. Recording the audio is necessarily
done in real-time and therefore requires many (around 14)
hours of personal computer energy usage per “Patch Folder”
created (currently we have 4 “Patch Folders” available). For
each“Patch Folder”the audio analysis and machine learning
are completed using a personal computer (all on a CPU)
using around one hour of computer energy usage. All of
the SuperCollider code that does the analysis and machine
learning has been created with the aim of computational
efficiency. Because SMAI is a sample based emulation, while
running it takes very little CPU energy to run, however does
require a large amount of memory.

6. CONCLUSIONS

The SMAI is a sample-based computer emulation of se-
lected patches on a vintage Serge Modular Music System.
By including a skeuomorphic interface alongside a machine
learning enabled three-dimensional plot of the sound slices,
SMAI offers the comparison of two distinct control paradigms
from which to approach the same corpus of audio. MIDI and
OSC control further enables maximum flexibility in how the
sounds are controlled. All of these ways of viewing and ac-
cessing the sounds makes SMAI a unique software program
that exists both as an archive and a performable instru-
ment for musical expression. Through further research us-
ing SMAI, the authors hope that these design choices can
lead to more understanding of the musical differences be-
tween these two control design paradigms.
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