
A Physical Intelligent Instrument using Recurrent Neural
Networks

Torgrim R. Næss
Department of Informatics
University of Oslo, Norway

torgrirn@ifi.uio.no

Charles P. Martin
RITMO and Department of Informatics

University of Oslo, Norway
charlepm@ifi.uio.no

ABSTRACT
This paper describes a new intelligent interactive instrument,
based on an embedded computing platform, where deep
neural networks are applied to interactive music generation.
Even though using neural networks for music composition is
not uncommon, a lot of these models tend to not support
any form of user interaction. We introduce a self-contained
intelligent instrument using generative models, with support
for real-time interaction where the user can adjust high-level
parameters to modify the music generated by the instrument.
We describe the technical details of our generative model
and discuss the experience of using the system as part of
musical performance.

Author Keywords
Embedded instruments, recurrent neural networks, genera-
tive models, interaction.

CCS Concepts
•Applied computing → Sound and music comput-
ing; •Computing methodologies→ Neural networks;
•Human-centered computing → Interaction paradigms;

1. INTRODUCTION
The use of machine learning algorithms to create musical
compositions is a growing field of study. A lot of recent
generative models applying deep neural networks, however,
do not support direct human interaction, particularly in
real-time during musical performance. Introducing ways for
the user to manipulate the musical output will allow for such
systems to be used in new kinds of intelligent interactive
instruments, and to be explored through musical improvisa-
tion. Such instruments can be used by people with little or
no previous experience to easily play around with musical
ideas without the investment of time and money to learn a
“real” instrument.

The main contribution of this research is a novel embedded
device for interactively generating music with a recurrent
neural network (RNN). This contrasts with many previous
examples of music generation with neural networks that
focus on offline, rather than interactive, generation of music,
or require a powerful computer. Our device demonstrates
that it is feasible to implement RNN-based music generation

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

Figure 1: A user interacting with our physical in-
telligent instrument: a device that continually gen-
erates and performs music using a recurrent neural
network. The system is self-contained with controls
for volume and sampling “temperature” as well as a
built-in speaker for sonifying generated notes.

on a self-contained embedded platform, and explores manip-
ulation of the continuous note sampling process as the main
interactive function. This small device could be applied
within many different musical scenarios and in setups with
other instruments or equipment. This paper presents the
design and implementation of an instrument prototype (Fig-
ure 1), and discusses the user experience along with some
design considerations and ideas for future improvements.

2. BACKGROUND
The use of artificial neural networks (ANNs) to create music
and art has generated wide interest in recent years. ANNs
can learn to transform any given picture to look like a paint-
ing created with different painting styles [9], and generate
images that are practically indistinguishable from real pho-
tos [10]. ANNs can also be applied to synthesise musical
audio waveform data [8], or translate music across musical
instruments, genres, and styles [15].

Because neural networks can be trained to produce data
learned from real-world examples, they can be good candi-
dates for producing musical scores or performances without
the need to program the rules of music theory manually.
Deep Artificial Composer [5] can for example generate mono-
phonic melodies resembling specified musical styles, and
Performance RNN [17] can create polyphonic music with ex-
pressive timing and dynamics. Recently, interactive systems
including ANN music generation have started to appear, e.g.,
RoboJam [13], a touchscreen music app that performs re-

79



sponses to short improvisations, and Piano Genie [7], which
allows non-musicians to improvise on the piano. Neural nets
can also be used to aid musicians in live performances, such
as intelligent drum machines able to generate variants of
rhythmic patterns provided as input by the user [19]. There
is now potential to embed neural nets within smart musi-
cal instruments [18], or to create self-contained ANN music
generators that could be used on stage or in the studio.

2.1 Artificial Neural Networks
ANNs were originally designed to imitate, in a simple way,
the functionality of neurons in a real brain [4]. The basic
building blocks are artificial neurons that take multiple input
values, multiply them by respective weights and produce an
output value. The input values can represent anything from
pixels in an image to MIDI note values. Large numbers of
these neurons are interconnected and arranged in a series
of layers to form a network that can be trained for different
applications such as pattern recognition and image classi-
fication. During training, the network is exposed to large
numbers of examples with input values and expected output
values. Based on the errors encountered in processing these
examples, the network will adjust its weights to adapt to
the training data.

2.1.1 Recurrent Neural Networks
Since music can be represented as a sequence of notes, the
network must be able to predict this sequence based on
both current and previous inputs; otherwise, the generated
music will have no musical coherency. Recurrent neural
networks (RNNs), are designed for the purpose of working
with data sequences, and have been demonstrated to manage
this task. The output of an RNN depends not only on its
current inputs, but also on an internal state value that holds
information from previous time steps, which allows it to
learn to make decisions based on information it has seen in
the past.

2.1.2 Long Short-Term Memory
Long short-term memory (LSTM) is a commonly used vari-
ant of RNNs that is able to capture much longer sequences
than a regular simple RNN, which has a tendency to forget
information when the sequences become longer. The LSTM
achieves this by having an additional internal state called a
“cell state” where information can be allowed to pass freely
to later time steps, and by using a set of multiplicative gates
to control the flow of information. There are three gates: an
input gate, an output gate and a “forget gate”. The input
gate controls the information added to the cell state, making
sure that irrelevant inputs do not pass through. Similarly,
the output gate makes sure that irrelevant content is not
passed along. The forget gate allows LSTM cells to reset
when the content is no longer needed.

2.2 Music on Embedded Devices
Desktop computers and laptops are a well-established cen-
tral component of digital musical instruments, but the use
of single-board computers and embedded systems is becom-
ing increasingly common. With the growing computing
power and availability of single-board computers and mi-
crocontrollers, new platforms for creating digital musical
instruments appear [14, 3]. Such platforms make it easy
to prototype embedded instruments for performances and
installations [16].

Self-contained, or embedded, instrument designs come
with several advantages over the use of, for example, a laptop
and simple microcontroller-based interface. The increased
processing power of single-board computers allows more

Figure 2: Close-up view of the physical intelligent
instrument. The system has a built-in speaker and
two knobs to control volume and sampling “temper-
ature.”

Figure 3: Diagram of the system. A generative mu-
sic RNN model runs on a Raspberry Pi. The audio
output goes through an amplifier with a potentiome-
ter volume control and is played back on the built-in
speaker. An analog-to-digital converter reads the
voltage across a second potentiometer to control
sampling temperature. The user can interact with
the system by adjusting the two potentiometers.

computationally intensive tasks to be performed natively
than on a microcontroller, eliminating the need for external
computers. Removing the use of general-purpose computers
that are not dedicated to the instrument prototype can
also increase longevity, as changes in other software might
affect the functionality of the system [2]. The stability and
portability of these systems suggest that they can be useful
to artists who apply them within instrumental setups in live
performance, or in their studios.

3. DESIGN AND IMPLEMENTATION
Our physical intelligent instrument system, shown in Figure
2, consists of a box with a speaker and two knobs that
the user can use to adjust certain parameters of musical
predictions and playback. The system is designed to run
music generation RNN models, and continually synthesise
and sonify generated notes through an on-board speaker.

Figure 3 shows an overview of the system. The software
runs on a Raspberry Pi Model 3 B+ single-board computer.
An analog-to-digital converter (ADS1115) reads the voltage
across a potentiometer to control the sampling temperature,
and a 2.5 W mono audio amplifier (PAM8302), with another
potentiometer for gain control, drives the speaker. The
inside of the instrument is shown in Figure 4.

80



Figure 4: Hardware inside the enclosure. Hardware
components consist of a Raspberry Pi, an analog-
to-digital converter, two potentiometers, an audio
amplifier and a speaker.

Figure 5: Notes are represented as integers with
sixteenth note duration. 60, 64, 66 and 67 represent
MIDI note numbers. 129 means no change, so the
previous note will be held until a new note is played,
or a value of 128 turns the note off.

3.1 Musical Representation
The system encodes music using sequences of integers in
the range 0–129. 0–127 are pitches from the standard MIDI
format, 128 tells the system to stop the note that was playing,
and 129 represents no change. Each integer event has a
duration of one sixteenth note. An example of the encoding
is shown in Figure 5.

3.2 Network Architecture
The music generation RNN for the system is implemented
in Python, using the Keras deep learning framework [4].
The RNN is in an auto-regression configuration, having
been trained to predict the next in a sequence of notes. By
returning the output of the RNN to the input, a continuous
stream of musical notes can be generated.

The model consists of two LSTM layers with 256 cells
each, an embedding layer on the input, and a dense layer
with a softmax activation function on the output. The em-
bedding layer transforms the input integer representation
of notes into vectors of fixed size that the two LSTM layers
can process hierarchically. The dense layer with softmax
activation then projects the output from the LSTM lay-
ers back into probability distributions over possible note
values. This style of neural network has been effectively
used for creative sequence-learning tasks such as character-
level text generation (CharRNN [11]), and music generation
(MelodyRNN [1]).

3.3 Training
The training data is a set of 405 Bach chorales from the
Music21 toolkit [6]. These chorales were split into four

separate voices (soprano, alto, tenor and bass), and each
voice was used as a single melody during training, giving
a total of 1620 training examples of monophonic melodies.
All melody lines were transposed to C major and A minor
prior to training.

We trained the model for approximately 150 epochs with
the Adam optimizer [12] and sparse categorical cross-entropy
loss function, using a 90/10 training/validation split. Train-
ing was performed on an Nvidia GTX1070ti GPU. Due to
the small size of the dataset, the model began to overfit
before converging to a low loss value. It can be argued
that this is not a big problem for this type of system, as
the generated music should be perceived as pleasing to the
human ear.

3.4 Sampling and Playback
When we sample from the model, it returns a vector of
probability distributions over all possible note values. From
this distribution, we can find the most probable next note
based on previously predicted notes in the sequence. Two
processes—one for sampling, and one for playback—run in
parallel. The model is given a seed note as a starting point
that it uses to predict the next notes in the sequence. After
each prediction, the last note of the previous sequence is
stored to be used as the seed for the next. This allows the
model to play a continuous melody. The playback process
sends notes over an internal MIDI connection for synthesis
via the Timidity++ software synthesiser and FluidR3 sound-
font. A shell script is used to ensure that the instrument
processes are automatically started on boot. This, and the
built-in speaker and controls, means that the instrument is
completely self-contained and requires only USB power for
performance.

3.5 User Interaction
After booting, the instrument will automatically start to play
a continuous monophonic melody sampled from the LSTM
network. By turning the two knobs on the instrument, the
user can adjust two parameters of the system: volume and
temperature. Temperature in this context is a hyperparame-
ter that can be used to control the randomness of predictions
by scaling outputs from the LSTM before applying softmax
to calculate the probability distribution. A low temperature
makes the model more conservative, making it less likely
to sample from unlikely notes, while a higher temperature
softens the probability distribution and allows the model to
choose notes with a lower probability more often. Predic-
tions with higher temperatures are more diverse, but can
also have more mistakes. We use a temperature range of
0–10 in our model.

4. DISCUSSION
To give the feeling of real-time response from the instrument,
we wanted to make sure the temperature adjustments begin
to take effect as quickly as possible. Even though the system
is fast enough to predict and play single notes, we found
that predicting a sequence of two notes instead reduces
the overhead without making any noticeable change in the
response time from the temperature adjustment controls.
This is not a big concern at this time, but might become
more important when expanding the instrument with more
functionality in the future.

The most important interaction in this context is the tem-
perature control, which has a big impact on the generated
melodies. At a temperature of 1, we can hear that the LSTM
network has learned the structure and important musical
elements of Bach chorales. When we increase the temper-
ature to mid-range, the music begins to sound more like

81



experimental jazz, while still retaining some of the chorale
elements. At higher temperatures, the music sounds like
completely random notes, especially at max temperature
where there is almost no coherency or structure. At the
lowest temperature, the music tends to get stuck at a single
note or pattern very quickly. We would argue that having
the option to control the diversity of the generated melody
results in a more enjoyable and rewarding user experience.
There is another advantage of having a way to control the
sampling temperature. When generating longer sequences,
an LSTM network will often converge to a fixed state and
become very repetitive. If this happens, the user can increase
the temperature to make sure the model will include some
more unlikely notes.

In our experience, the instrument is quite fun to use, and
it grants the feeling of having some control over the music,
even though it is generated by the LSTM model. However,
more ways of interaction could be added in order to make
this prototype a complete instrument, as it can become a
little monotonous after a while. Possible extensions could
be tempo control, choice of software synthesisers, or a MIDI
interface where the user can connect a keyboard to play along
with the instrument. It could also be useful to implement a
way of choosing between multiple models trained on different
data sets. If the users wants to train and test their own
models, being able to switch between them would result in
a more versatile instrument.

Experience with this system so far suggests that music
generation RNNs could be a useful tool in music-making
for both unskilled and expert users. Our system allows
the sampling process to be explored in real-time during
improvisation. As our system is self-contained, it can easily
be integrated with other music-making devices, such as
hardware synthesisers, or commercial music controllers.

5. CONCLUSIONS
In this paper, we have introduced a self-contained, physi-
cal, intelligent instrument that uses a deep recurrent neural
network to generate music and supports real-time user in-
teraction. Our work so far has demonstrated that real-time
generation of music using an RNN is feasible on an embed-
ded instrument using a Raspberry Pi. This system allows
sampling diversity, or temperature, of the neural network
model to be explored in real-time performance. Our initial
explorations with the system suggest that this interaction,
albeit simple, may help over some of the limitations of RNN
music generation; in particular, the propensity for such mod-
els to become caught up in repetitive sequences. The fact
that the RNN is made interactive may compensate for a
model that is somewhat overtrained on a limited dataset. In
future work we seek to understand how this system could
form part of everyday music-making setups, and what kind
of music it could afford or suggest. We are currently ex-
perimenting with an enhanced system that allows users to
switch between different trained RNN models, between dif-
ferent software synthesisers, and to change tempo. This
allows music from different styles or idioms to be generated.
Code and schematics for both instrument versions is openly
accessible on GitHub.1

6. ACKNOWLEDGMENTS
This work is supported by The Research Council of Norway
as part of the Engineering Predictability with Embodied
Cognition (EPEC) project #240862, the Collaboration on
Intelligent Machines (COINMAC) project #261645, and the
Centres of Excellence scheme, project #262762.
1https://github.com/edrukar/intelligent instrument

7. REFERENCES
[1] D. Abolafia. A recurrent neural network music

generation tutorial. [Magenta Project Blog Post], 2016.

[2] E. Berdahl. How to make embedded acoustic
instruments. In Proc. NIME ’14, pages 140–143, 2014.

[3] E. Berdahl and W. Ju. Satellite CCRMA: A musical
interaction and sound synthesis platform. In Proc.
NIME ’11, pages 173–178, 2011.

[4] F. Chollet. Deep learning with Python. Manning
Publications Co, 2018.

[5] F. Colombo, A. Seeholzer, and W. Gerstner. Deep
artificial composer: A creative neural network model
for automated melody generation. In Computational
Intelligence in Music, Sound, Art and Design, pages
81–96. Springer, 2017.

[6] M. S. Cuthbert and C. Ariza. Music21: A toolkit for
computer-aided musicology and symbolic music data.
In ISMIR, pages 637–642. International Society for
Music Information Retrieval, 2010.

[7] C. Donahue, I. Simon, and S. Dieleman. Piano genie.
In Proc. IUI, 2019. doi:10.1145/3301275.3302288.

[8] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck,
K. Simonyan, and M. Norouzi. Neural Audio Synthesis
of Musical Notes with WaveNet Autoencoders. In Proc.
ICML, 2017.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. In Proc.
CVPR, pages 2414–2423, 2016.

[10] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and
D. Wierstra. Draw: A recurrent neural network for
image generation. In Proc. ICML, volume 37, pages
1462–1471, 2015.

[11] A. Karpathy. The unreasonable effectiveness of
recurrent neural networks. Published on Andrej
Karpathy’s blog, May 2015.

[12] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. ICLR 2015, 2015.

[13] C. P. Martin and J. Torresen. RoboJam: A musical
mixture density network for collaborative touchscreen
interaction. In Computational Intelligence in Music,
Sound, Art and Design: International Conference,
EvoMUSART, 2018.
doi:10.1007/978-3-319-77583-8_11.

[14] A. McPherson and V. Zappi. An environment for
submillisecond-latency audio and sensor processing on
beaglebone black. In Audio Engineering Society
Convention 138. Audio Engineering Society, 2015.

[15] N. Mor, L. Wolf, A. Polyak, and Y. Taigman. A
universal music translation network. ArXiV ePrint,
2018. arXiv:1805.07848.

[16] V. E. G. Sanchez, A. Zelechowska, C. P. Martin,
V. Johnson, K. A. V. Bjerkestrand, and A. R.
Jensenius. Bela-based augmented acoustic guitars for
inverse sonic microinteraction. In Proc. NIME ’18,
page 324–327, 2018.

[17] I. Simon and S. Oore. Performance rnn: Generating
music with expressive timing and dynamics. [Magenta
Project Blog Post], June 2017.

[18] L. Turchet. Smart musical instruments: Vision, design
principles, and future directions. IEEE Access,
7:8944–8963, 2019.

[19] R. Vogl and P. Knees. An intelligent drum machine for
electronic dance music production and performance. In
Proc. NIME ’17, pages 251–256, 2017.

82

https://github.com/edrukar/intelligent_instrument
http://dx.doi.org/10.1145/3301275.3302288
http://dx.doi.org/10.1007/978-3-319-77583-8_11
http://arxiv.org/abs/1805.07848

	Introduction
	Background
	Artificial Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Music on Embedded Devices

	Design and Implementation
	Musical Representation
	Network Architecture
	Training
	Sampling and Playback
	User Interaction

	Discussion
	Conclusions
	Acknowledgments
	References

