
Performance Systems for Live Coders and Non-Coders

Avneesh Sarwate, Ryan Rose, Jason
Freeman

Georgia Tech Center for Music Technology
840 McMillan Street NW

Atlanta, GA
{avneesh, rytrose, jason.freeman}@gatech.edu

Jack Armitage
Centre for Digital Music, Queen Mary U of

London
Mile End Road London E1 4NS

London, United Kingdom
j.d.k.armitage@qmul.ac.uk

ABSTRACT
This paper explores the question of how live coding musi-
cians can perform with musicians who are not using code
(such as acoustic instrumentalists or those using graphical
and tangible electronic interfaces). This paper investigates
performance systems that facilitate improvisation where the
musicians can interact not just by listening to each other
and changing their own output, but also by manipulating
the data stream of the other performer(s). In a course of
performance-led research four prototypes were built and an-
alyzed using concepts from NIME and creative collaboration
literature. Based on this analysis it was found that the sys-
tems should 1) provide a commonly modifiable visual rep-
resentation of musical data for both coder and non-coder,
and 2) provide some independent means of sound produc-
tion for each user, giving the non-coder the ability to slow
down and make non-realtime decisions for greater perfor-
mance flexibility.

Author Keywords
Live coding, creative collaboration, NIME design

CCS Concepts
•Applied computing → Performing arts; Sound and
music computing;

1. INTRODUCTION
Live coding is an art form where performers create art
through writing code in real time, often in front of an au-
dience [5]. Our research focuses on the interplay of two
collaborating parties: live coding musicians and non-coding
musicians. By non-coding musicians, we mean any musi-
cian who does not write code during a performance. In
our work, non-coders have used both traditional instrument
forms (e.g. guitar, keyboard) and graphical and tangible in-
terfaces (e.g. touch screen, MIDI controller, NIMEs). We
seek to design interfaces where both live coders and non-
coders can contribute and interoperate in a musical perfor-
mance with satisfactory knowledge of their collaborator’s
actions.

To investigate interface designs that lead to successful
collaboration, we conducted a program of performance-led
research based on Benford et. al.’s existing methodology

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

[1]. We developed and tested four performance interfaces
(each consisting of a graphical/tangible interface for the
non-coder and a live coding API in Python for the live
coder), with each iteration being built off knowledge gained
from performing with and analyzing the previous. Testing
occurred in two forms: the authors improvised with the in-
terfaces in an unrestricted, private setting, and also in a
single public performance of semi-improvised music.

Benford et al. [1] corroborate the effectiveness of this
research strategy, especially for interface design in artistic
pursuits. Specifically, we employ this strategy with Ben-
ford’s fifth relationship in mind: “Theory can also guide
practice, distilling artists’ ‘craft knowledge’ into guidelines
that can be used by other artists or perhaps practitioners
in other fields” [1]. Our interface development highlights re-
curring issues in performance systems combining live coders
and non-coders, for which we present potential solutions. At
the time of writing, this research is exploratory and part of a
larger investigation into systems that incorporate both cod-
ing and non-coding interfaces. Our current analysis finds
that a commonly modifiable visual representation of mu-
sical data for both coder and non-coder greatly increases
both musicians ability to communicate musical change and
make informed musical decisions. Also, providing some in-
dependent means of sound production for each user gives the
non-coder the ability to slow down and make non-realtime
decisions, which prevents them from being overloaded by
complex output from the live coder.

This paper is structured as follows: each of our proto-
types’ motivations are described, followed by a description
of the system and its use. After testing the system through
personal performance, we then analyze the successes and
failures using tools from creative collaboration literature.
Lastly, we synthesize the trends in our analysis into design
recommendations.

2. RELATED WORK
There have been multiple systems created that explore com-
munication between coding and non-coding musicians. One
such system is Magnussons’ piece Fermata, which combines
the live coded Threnoscope and an augmented bass clarinet
[7]. However, Fermata has the Threnoscope and bass clar-
inet operating as independent systems coordinated only by
human intention rather than by some formal mechanism.
We seek to incorporate a formal computational relationship
between the information the two parties input into a system.
Another collaborative system is Eldridge et al.’s feedback
cello, in which a self-resonating cello can be live coded, but
there is a strict limitation on the flexibility of the collabora-
tion due to this being a highly-specialized instrument, both
in terms of musical aesthetics and the requirement of a phys-
ically resonant instrument body [6]. Other examples in live
coding literature reference the ability to dynamically remap

370



interface parameters [2, 11], but are more focused on prov-
ing the potential of such dynamic mapping systems than an-
alyzing the types of mappings possible. More broadly, Lee
and Essl’s live coded mobile music instrument successfully
couples a live coder and an instrumentalist: the live-coder
generates a touch-screen interface on which the non-coder
performs [8]. This collaborative experience is desirable be-
cause interacting with symbolic abstractions of musical data
in real time provides the potential for deeper interaction.
We seek to model this experience, but plan to focus on de-
veloping a more static interface for the non-coder.

As part of our research we analyzed our prototypes with
respect to concepts from NIME and creative collaboration
literature. The first is the concept of mutual engagement
applied to creative collaborations proposed by Bryan-Kinns
et al [3]. They define mutual engagement as the point where
collaborators are “engaged with both the product at hand
and with others in the collaboration”. Bryan-Kinns et al.’s
work also provides design goals for facilitating mutual en-
gagement. We chose this framework because it studies fea-
tures of realtime collaboration in the creative domain [3].
We also used Nash and Blackwell’s concept of liveness in
musical interfaces to investigate how coders and non-coders
operate at different time scales [9]. Nash defines level 3
liveness as “edit-triggered” systems, such as live coding, “in
which edits to the representation instantly trigger feedback,
allowing users to make rapid actions and (after system re-
sponse) a chance to correct mistakes” [9]. Nash then defines
level 4 liveness as“stream-driven”, such as live performance,
“in which the program is continually active, and where edits
directly affect program execution, providing high visibility
of the effect of actions” [9]. Nash’s work provides a use-
ful lens for examining how a live-coder and non-coder may
communicate across timescales.

3. PROTOTYPES
3.1 Prototype I - Response Functions
For our first prototype we adapted an idea from Dan Tepfer’s
experiments with the Yamaha Disklavier. Tepfer would play
a melody on his instrument, which would be then trans-
formed by a computer program and played to him in real-
time [4]. For Tepfer, the transformation programs were de-
fined before the performance, and we were interested in ex-
ploring how live coding could be used to define these trans-
formations in real-time.

Our hypothesis was that the non-coder and live coder
would pass musical material back and forth, much like jazz
musicians improvising by trading fours. The non-coder would
seed the system with a melody, and its transformation by
the response function would provide inspiration for further
content, and this cyclical process would continue.

The transformation we experimented with was buffer shuf-
fling, i.e. permutation of sliced segments of a melody (Fig-
ure 1). To give some control over this response to the non-
coding musician, we developed two different triggers that
the non-coder could use to call these response functions.
The first trigger activated the response function when the
non-coding musician held a note longer than a specified
amount of time (set by live coder). The other trigger was
a specified duration of silence (also set by the live coder).
Only one type of trigger could be active at a time, deter-
mined by the live coder. To implement this system we used
a Novation Launchpad as a“keyboard”, which the non-coder
would play on as a typical note-triggering MIDI interface.

In practice, the actions of the live coder proved too com-
plex for the non-coder to decipher and respond to. The key-
board player (non-coder) couldn’t decipher complex shuf-

Figure 1: An example of buffer shuffling. The pat-
tern "ABCD" becomes "CADB".

flings at all, and for simpler shufflings, they still couldn’t
understand them fast enough to respond quickly to changes
in the pattern. In terms of Nash’s levels of liveness, the
live coder is engaging in a level 3 activity, and has time to
produce complex output. The non-coder, as a level 4 real-
time performer, is forced to parse the complex output of
the live coder on the fly. Furthermore, the live coder can
use the code as a visual aid when constructing the permu-
tation. The non-coder has no visual reference at all. In
terms of mutual engagement, this violates Bryan-Kinns et
al.’s guideline that collaborators should share a consistent
representation of the object being manipulated, in this case,
music. These difficulties were exacerbated by the fact that
a musical permutation is not a structure that the perform-
ers were musically familiar with, and thus had more trouble
thinking about than common structures such as loops.

3.2 Prototype II - Loop Sequencer
Inspired by the deficiencies of the previous system, we hy-
pothesized that a system with clearer visualized musical
data, represented with more familiar metaphors, would be
more successful.

For this prototype’s non-coding interface we implemented
a step sequencer, where each step is a measure-long melody.
These melodies are recorded in real-time via MIDI con-
troller. The system provides an optional metronome track,
to facilitate real-time melody recording. The step sequencer
interface was a traditional toggle grid, implemented on a
Novation Launchpad.

The live coder had the power to manipulate the sequencer
grid as well as apply transformations to the recorded melodies.
The transformations were the counterpoint transforms of in-
version, retrograde, and transposition. With the ability to
apply and undo these transformations at will, the live coder
could contribute to the musical output of performances in-
dependent of the actions of the non-coder. This indepen-
dence was lacking in the previous prototype.

We found performance with this system more engaging
than with the previous. While performing we had better
understanding of each other’s actions, and could modify
each other’s musical output more effectively. Instead of
the constant call-and-response of the previous prototype,
this system provided a persistent structure (a melody loop)
that did not require continuous activity to generate musi-
cal output. This allowed the non-coder to have both level
4 liveness activity (e.g. improvising on the keyboard over
the sequenced melodies) and level 3 liveness activity (e.g.
setting the sequencer arrangement, planning new melodies
to record).

Furthermore, the visualization of a common representa-
tion led to well-informed decision-making by the performers.
The step sequencer interface implemented Nielsen’s heuris-
tic of a highly visible system state, which clearly commu-
nicates what was happening musically [10]. Because both
performers were working with the same representation and
manipulating the same objects, modification of each other’s
output through the step sequencer was facilitated, meeting
Bryan-Kinns et al.’s guideline of mutual modifiability. For

371



the performers, looping melodies were easier to reason with
than abstract musical permutations.

However, the visualization did not extend to the live coder’s
transformation of the non-coder’s melodies. While the per-
sistence of the loop allowed the non-coder to parse the trans-
formation aurally over multiple loop playbacks, this added
avoidable processing time. Here, mutual modifiability on
the loop level was not achieved, as the transformations were
not removable by the non-coder. This could have been ame-
liorated through a simple undo/redo button for the non-
coder.

3.3 Prototype III - Parameter Curves
Drawing on the success of visualization from the previous
interface, we were motivated to create a system with all
musical data visualized. Additionally, we wanted to explore
how a live coder could interact with an audio signal from
a more traditional instrument. This prototype introduces a
parameter curve system, where the live coder could define
curve functions of varying complexity, and map these curves
to parameters on a signal processing effect chain through
which the non-coder (an electric guitarist) is playing. Be-
cause curves can be easily visualized, we hypothesized that
full exposure of state would lead to musically rich output.

The signal chain consisted of a grain delay, a conventional
delay, a pitch shifting module, and reverb. In an attempt
to not overwhelm the guitarist with too much parameter
change, only two parameters of these effects were ever be-
ing dynamically manipulated at one time. We designed a
visualization where at least one period of the curve function
would be shown, and a tracking line would move across time
to show the current level of the effect (Figure 2).

Figure 2: Curve visualization and code snippet from
the Parameter Curves interface.

While our visual interface properly communicated rela-
tive effect values, this continuous-valued effects parameter
notation was very non-standard and challenging for the gui-
tarist to make sense of musically. Through this prototype’s
design process, we discovered that there is a key difference
between being understandable as an interface, and being un-
derstandable in a musical sense. This is illuminated when
examining this interface through the lens of liveness: much
like the first interface, the live coder, operating at level 3
timescale, is creating a complex object (the curve envelope)
that the guitarist must respond to at a level 4 timescale.
In this instance, the object was not intuitively understood
because parameter curves are not a structure that guitarists
are familiar with. The usefulness of the visualization was
thus lost, due to the type of information conveyed.

Furthermore, the interface violated the consistent repre-
sentation feature of Bryan-Kinns’ mutual engagement. The
continuous parameter curve provided to the guitarist was
incongruous with the discrete note data they were produc-
ing. A more successful system could have matched the data
forms: displaying a stream of chords to a guitarist playing
notes, or giving parameter curves to a musician controlling
the knobs of a modular synthesizer.

Lastly, this prototype suffered from the same problem for
the live coder as the Response Functions system: input from

the non-coder was required for the live coder to affect out-
put. Again, the non-coder struggled to generate material,
which limited live coder contribution as well.

3.4 Prototype IV - Orbit Environment
For our final interface, we sought to fix issues from the pre-
vious systems by designing the graphical interface and live
coding API in tandem rather than adding live coding to an
existing, non-coded system. In addition, we wanted to ex-
periment with a procedural system that would lend itself to
a high degree of visibility for the non-coder. To meet these
constraints, we implemented a live coded physics environ-
ment where sound was generated by moving balls passing
through positional triggers. A combination of touch screen
and MIDI controller input allowed the non-coder to ad-
just the trajectory of these balls, which traveled in periodic
paths across the environment. The live coder positioned
lines across the environment, which triggered a note when
crossed by a ball. The musical mappings of the notes trig-
gered were defined by the live coder. The non-coder could
manipulate global effects (e.g. bit-crushing, filtering, delay)
through a separate, smaller, ball environment. In this en-
vironment, each ball was mapped to a different parameter,
and the value of the parameter was defined by the distance
of the ball from the center of the environment (Figure 3).

Figure 3: The Orbit Environment interface.

This system succeeded in giving the non-coder the flexi-
bility to operate on level 3 or level 4 timescales, much like
the Loop Sequencer, and allowed the coder to manipulate
sound without being dependent on the level 4 actions of the
non-coder. However, the system representation was musi-
cally non-standard and limited the ability of the performers
to make sense of the music. For example, due to the geom-
etry of the physics environment, it was difficult to predict
the rhythmic paths of the balls, even though they were op-
erating periodically.

The parameters of this system were not mutually editable.
Though both parties had control over system parameters,
they could not effectively control each other’s parameters.
This prevents even the mirroring of behavior between par-
ties, a detriment to mutual engagement as noted by Bryan-
Kinns et al. Furthermore, the physics environment’s rules

372



were too complex to allow any action to have a fully pre-
dictable outcome. A performer is unable to influence an-
other for two reasons: first, as mentioned, they don’t have
access to the other’s parameters. Second, the system is too
complex to compensate the actions of the other performer
with their own. For example, if the non-coder set a ball
trajectory and the live coder wanted to implement a spe-
cific change to the rhythm generated by that ball, the live
coder would have to change a different parameter than the
ball trajectory directly. The live coder would need to move
the trigger line to compensate - an action too complex to
apply accurately. This lack of mutual modifiability led to
musically directionless performances. Finally, the system
lacked visualization of the musical mappings for the non-
coder. While the live coder could reference the code as was
possible in the Response Function system, the non-coder
only had aural access to the mappings. The result was a
high memory load for the non-coder [10], which made the
level 4 action of planning note triggers exceedingly difficult.

4. DISCUSSION
4.1 Common Design Challenges
Two main design issues revealed themselves repeatedly through
the analysis of our prototypes. The first related to the trans-
lation of musical data: if the musical representation of the
live coder’s actions was not immediately understandable to
the non-coder, formulating a musical response was difficult
as the non-coder had to first process the representation.
This surfaced in the response functions of the first proto-
type, the parameter curves of the third, and the physics
parameters of the fourth. The second prototype avoided
this issue of musical representation through an intuitive vi-
sualization of musical data via the loop sequencer.

The second issue arose from complications of the perform-
ers operating on different timescales. The live coder was
often able to take time to produce complex musical output,
which the non-coder was forced to respond to immediately
for output of the system to continue. This was prevalent
again in the struggles of the non-coder using prototype I
and prototype III. Both the second and the fourth proto-
types avoided this by making sound generation not directly
dependent on level 4 liveness input from the non-coder (e.g.
in prototype II loops playback without input, and in proto-
type IV balls move autonomously triggering notes).

Based on these common problems and instances of their
mitigation, we propose the following two design guidelines.

4.2 Mutually Modifiable Visual Representa-
tions

Musical state should be represented visualized in a mutually
modifiable interface with musical representations intuitively
familiar to the performers (particularly the non-coder). Mu-
tual modifiablity of a common representation allows both
performers to directly modify the musical output of a col-
laborator, rather than being forced to “compensate” for the
change in one set of parameters by changing a different set of
parameters. Furthermore, selecting a representation that is
familiar to both performers allows them to respond quickly
to musical changes. Familiar representation is particularly
important for the non-coder, as an unfamiliar representa-
tion could hamper their ability to informedly respond to
musical change in real time.

4.3 Independent Sound Generation
The live coder and non-coder should have some independent
methods for generating sound. By allowing the live coder to
control the manipulation of sound without constant input
from the non-coder, the non-coder is free to engage in non-
real time activity, thus expanding the scope of actions that
they can take during the performance. This also prevents
either performer from being unable to generate music due
to the inactivity of their collaborator.

5. REFERENCES
[1] S. Benford, C. Greenhalgh, A. Crabtree, M. Flintham,

B. Walker, J. Marshall, B. Koleva,
S. Rennick Egglestone, G. Giannachi, M. Adams, and
others. Performance-led research in the wild. ACM
Transactions on Computer-Human Interaction
(TOCHI), 20(3):14, 2013.

[2] A. R. Brown and A. C. Sorensen. aa-cell in practice:
An approach to musical live coding. In Proceedings of
the International Computer Music Conference, pages
292–299. International Computer Music Association,
2007.

[3] N. Bryan-Kinns, P. Healey, and J. Leach. Exploring
mutual engagement in creative collaborations. In
Proceedings of the 6th ACM SIGCHI conference on
creativity & cognition, C&C ’07, pages 223–232.
ACM, June 2007.

[4] N. Chinen. Fascinating Algorithm: Dan Tepfer’s
Player Piano Is His Composing Partner.
https://www.npr.org/2017/07/24/538677517/

fascinating-algorithm-dan-tepfers-player-

piano-is-his-composing-partner, July 2017.

[5] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised sound,
8(3):321–330, 2003.

[6] A. Eldridge and C. Kiefer. Self-resonating Feedback
Cello: Interfacing gestural and generative processes in
improvised performance. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 25–29, Copenhagen,
Denmark, 2017. Aalborg University Copenhagen.

[7] P. Furniss. Live coding meets augmented instruments.
https://petefurniss.wordpress.com/2016/01/12/

live-coding-meets-augmented-instruments/, Jan.
2016.

[8] S. W. Lee and G. Essl. Live Coding The Mobile
Music Instrument. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 493–498, Daejeon, Republic of Korea, May
2013. Graduate School of Culture Technology, KAIST.

[9] C. Nash and A. Blackwell. Liveness and Flow in
Notation Use. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
Ann Arbor, Michigan, 2012. University of Michigan.

[10] J. Nielsen. Heuristic evaluation. Usability inspection
methods, 17(1):25–62, 1994.

[11] G. Wang, A. Misra, A. Kapur, and P. R. Cook. Yeah,
ChucK it! dynamic, controllable interface mapping.
In Proceedings of the 2005 conference on New
interfaces for musical expression, pages 196–199.
National University of Singapore, 2005.

373

https://www.npr.org/2017/07/24/538677517/fascinating-algorithm-dan-tepfers-player-piano-is-his-composing-partner
https://www.npr.org/2017/07/24/538677517/fascinating-algorithm-dan-tepfers-player-piano-is-his-composing-partner
https://www.npr.org/2017/07/24/538677517/fascinating-algorithm-dan-tepfers-player-piano-is-his-composing-partner
https://petefurniss.wordpress.com/2016/01/12/live-coding-meets-augmented-instruments/
https://petefurniss.wordpress.com/2016/01/12/live-coding-meets-augmented-instruments/

	Introduction
	Related Work
	Prototypes
	Prototype I - Response Functions
	Prototype II - Loop Sequencer
	Prototype III - Parameter Curves
	Prototype IV - Orbit Environment

	Discussion
	Common Design Challenges
	Mutually Modifiable Visual Representations
	Independent Sound Generation

	References

