
A Virtual Machine for Live Coding Language Design

Graham Wakefield
School of the Arts, Media, Performance and

Design, York University, Toronto, Canada
grrrwaaa@yorku.ca

Charles Roberts
School of Interactive Games and Media
Rochester Institute of Technology, USA

cdrigm@rit.edu

ABSTRACT
The growth of the live-coding community has been coupled
with a rich development of experimentation in new domain-
specific languages, sometimes idiosyncratic to the interests
of their performers. Nevertheless, programming language
design may seem foreboding to many, steeped in computer
science that is distant from the expertise of music perfor-
mance. To broaden access to designing unique languages-as-
instruments we developed an online programming environ-
ment that offers liveness in the process of language design as
well as performance. The editor utilizes the Parsing Expres-
sion Grammar formalism for language design, and a virtual
machine featuring collaborative multitasking for execution,
in order to support a diversity of language concepts and
affordances. The editor is coupled with online tutorial doc-
umentation aimed at the computer music community, with
live examples embedded. This paper documents the design
and use of the editor and its underlying virtual machine.

Author Keywords
Computer Music, Live Coding, Programming Language De-
sign, Parsing Expression Grammars, Web Technologies

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, H.5.2 [Information Interfaces and Pre-
sentation] User Interfaces, D.3 [Programming Languages],
D.2.11 [Software Engineering] Software Architectures.

1. INTRODUCTION
The past decade has seen a broad variety of programming
languages used as instruments for live musical performance.
The notion of the programming language itself being a mu-
sical instrument is particularly well established within live
coding research [19, 2]; the community-authored TOPLAP
manifesto for example asserts that “programs are instru-
ments that can change themselves” [17]. Many such in-
struments use languages with musical features or domain-
specific languages (DSLs) that are oriented to computer
music. A DSL is valued according to how it reframes the
terms of work into a language of abstractions and special-
izations through which the characteristic affordances and
constraints of its application domain become more readily
available and discoverable.[14] Thus some performers and
live coders have explored designing new “mini-languages”
to embed within existing systems, frequently with live per-

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

formance as a driving motivation. For example, McLean’s
“TidalCycles” is a domain-specific specialization of Haskell
that embeds a further mini-language for polyrhythmic cy-
cles. Magnusson’s “ixi lang” sits atop the SuperCollider
domain-specific specialization of SmallTalk, and further em-
beds a mini-language for agent scores. As an instrument,
the language specialization serves as a“scaffold for external-
ising musical thinking”[9], through which “we are more able
to engage the right kind of cognitive load”[11] or “engage
directly with music through a high-level representation of
musical patterns”[7]. Some of these language specializations
are so idiosyncratic and model-constrained to be considered
initiating a miniature genre[3] or compositional form[9].

In this paper we document our work supporting the explo-
ration of notational specificity in languages-as-instruments,
while retaining flexibility, by bringing “liveness” to the pro-
cess of language design itself. We created a responsive gram-
mar editor along with a simple yet flexible target virtual
machine, embedded in a browser along with tutorial mate-
rials, for ease of access.1 Central to our goal is helping mu-
sicians create highly divergent or idiosyncratic instrument-
languages in a variety of paradigms. However, although
live coding languages often incorporate graphical syntax,
for now we have limited our scope to textual input.

2. DESIGNING LANGUAGES LIVE
The study of languages is often divided into syntax, seman-
tics, and pragmatics. Syntax specifies what are permissible
utterances of a language in terms of structure and com-
position; i.e. what can be parsed, regardless of meaning.
Semantics provides a function or mapping of the syntax to
a representation of its meaning, i.e. rules for transforming
terms into other terms; in computing this may be embedded
in the logical design of a compiler or interpreter. Pragmat-
ics refers to how the semantic meaning of a fragment, or of
a language, can be used; what it is useful for. As a mu-
sical instrument, the syntax provides its outer appearance
and possible arrangements, the semantics identify what each
surface feature does, and the pragmatics relate to what id-
ioms, compositional forms, or mini-genres it lends itself to.
A fourth concept of metalanguage gives the terms of how
each of these is defined.

2.1 Parsing
We chose the Parsing Expression Grammar (PEG) [6, 10]
metalanguage for parsing, which like many grammar for-
malisms describes a language in terms of a top-down set
of rules. These rules gain expressive power by being com-
posed through a variety of operators to succinctly capture
a greater variety of syntactic patterns. PEGs are easy to

1This system can be accessed from https://worldmaking.
github.io/workshop_nime_2017/index.html

275

grasp, with barely more than a handful of operators, little
syntax, and a handful of common ’recipes’ to cover most
situations.

A grammar consists of a set of rules, the first of which
is the start rule. Each rule has a name, a syntactic pattern
of strings, rule names, and operators that define the kinds
of input the rule can recognize and return, plus an optional
semantic action which can transform what is returned. In
our editor the action is simply the body of a JavaScript
function. For example, the following rule, named “start”,
recognizes the text “hello”, but returns the text “hej”:

start = "hello" { return "hej"; }

This trivial example highlights how parsing is akin to
translation of the syntax of a source language into the se-
mantics of a target language. Rules become more interesting
through the use of the small set of combinators, including
concepts of sequence, ordered-choice, zero-or-more, one-or-
more, etc., and a few other short-hand conveniences.

We determined that actions of parser rules should gen-
erate flat data structures representing a target language
rather than directly triggering sonic events. One reason
is that a readable output language can help clarify parser
behavior. Another reason is that the specific order in which
the parser traverses input code may not match desired se-
mantics; structural changes may need to wait for a higher
rule to be activated to arbitrarily re-organize the data of
sub-rules, before submitting to playback. This for example
allows the durations of a loop’s elements to be calculated
according to the number of elements it contains; more gener-
ally, it allows input languages to vary quite flexibly between
imperative and declarative styles.

Figure 1: The browser-based interface. In the
Grammar panel users can define a language’s syntax
and semantic actions. The Input panel lets users
experiment with the resulting language, with the
Output section below displaying live the semantic
results as instructions for the playback engine.

2.2 The editor
The editor (Figure 1) is designed to be responsive in de-
sign and interaction. Both the grammar and the source in-
put editor panes grow to fit the content, and can be edited
live with continuous evaluation. If desired, any input that
parses correctly will be executed automatically by the play-
back engine. Alternatively, smaller fragments of the input
window can be selected and executed at any time using the
Ctrl-Enter or Cmd-Enter keyboard shortcuts. For inputs
that fail to parse, an error is shown but no sonic changes
ensue. Such liveness of input text evaluation is normal for a
live coding language instrument. However the system also

applies this liveness to the grammar editor. Each modifica-
tion to the language’s grammar, and its semantic actions,
also triggers a re-evaluation of the input text against the
new grammar, and sonic events if the parse is successful.

2.3 The target language
The grammar editor allows a very wide range of idiosyn-
cratic languages to be designed, which through translation
to the target language must create sonic structure through
the set of features available in the playback engine. In the
choice of these available features we aimed for a concise
expression of a common set of concepts frequently found
in music programming and live coding languages, such as
strong timing for events, collaborative multitasking (or agents
and scores as found throughout Magnusson’s work), local
and global communication, the loops and layers typical to
dance music [5], communication with other software, etc.
We formalized these concepts through a target language
guided by several sometimes conflicting priorities:

• Human-readable: to rapidly understand how the parser
is working (correctly or incorrectly). This implies min-
imizing hidden state, and avoiding verbosity.

• Easy to learn, predictable to generate. Where reason-
able, keep abstractions in user-written grammars.

• Simple to generate: to keep grammar actions legible.
Terseness of the target language is less important than
the ease and flexibility of generating it.

• Efficient to interpret: keeping the playback engine ef-
ficient while supporting different structural patterns.

The design we settled on bears resemblance to a stack-based
language, in which a program fragment is a sequence of to-
kens interpreted item by item, possibly modifying the se-
quence as a result. This is highly conducive to interpreta-
tion, and indeed stack-based languages are frequently used
as the internal representations of interpreted languages. The
language is not a string of text tokens, but a sequence of
terms (as a JavaScript array) in which terms can be regular
numbers, strings, or nested sequences. We distinguish ex-
ecutable instructions (or “operators”) from data strings by
prefixing with the @ character, which facilitates readability
and simplifies the implementation of the interpreter.

Some instructions are relatively simple, like the binary
operator @add, whereas others are more complex. Some
instructions were chosen based on observations of similar
operations widely used in performance practice over vari-
ous languages. In particular, several instructions exist to
introduce variation, including @iter, which rotates the ar-
gument used on each pass through a loop, @chance, which
picks between two arguments according to a probability,
@pick, which chooses an argument at random, etc.

Stack-based languages are naturally expressed by reverse
Polish notation, in which operands are interpreted and sub-
mitted to the stack first, then consumed by subsequent op-
erators. For example, the following nested sequence will
wait for 12 beats before completing:

[[4, 8, "@add"], "@wait"]

The above is a valid JavaScript expression to declare a
nested list (array), and this is how it could be expressed in
the parser. More likely however it would be constructed
through a combination of parser actions. And although
nesting in this example is not actually necessary, it can aid
the reader in understanding the instructions, and permits
some useful flexibility in how the parser actions are applied.

276

Sometimes it is necessary to defer evaluation of an ex-
pression until it is needed; for example, a pattern may need
to play only conditionally, and should not be evaluated oth-
erwise; or a pattern may need to repeat a number of times.
In LISP-family languages the quote operator can be used to
pass an expression unevaluated (which is to say, to bypass
the normal mode of evaluation of the sequence of terms).
Instead, to simplify our engine, we present unevaluated ar-
guments after the operator, rather than before. For exam-
ple, when enountering a @loop instruction, the interpreter
knows to expect the next item to be a pattern to loop (and
will throw an error if this is not found).

["@loop", ["@snare", [1, "@wait"]]]

If we didn’t do this, then we would have to either ex-
plicitly quote patterns, or alternatively explicitly mark lists
to be evaluated. We avoid the need for widespread use of
quote or eval operators by argument placement. This also
simplifies the implementation of the language’s interpreter.

2.4 The playback engine
The playback engine implements an interpreter of the target
language with flexible and sample accurate scheduling. This
engine can run entirely in the browser, using a timing clock
and a small selection of default instruments from the Gib-
berish library [12] using instructions such as @pluck-note

or @snare. Alternatively it can synchronize and commu-
nicate with external applications via MIDI or WebSockets
using @midi- and @ws- instructions. The temporal seman-
tics implement collaborative multitasking to support paral-
lel musical threads, scheduled according to subdivisions of
an overall musical pulse. A simple a list of events will be se-
quenced at the same musical time, playing simultaneously:

[220, 1, "@pluck -note",
330, 1, "@pluck -note",
550, 1, "@pluck -note"]

To separate events in time, a sequence must incorporate
the @wait instruction, which consumes an argument for the
duration (in terms of the pulse) to insert. The @wait in-
struction effectively yields the current instruction queue to
its parent scheduler, to be resumed at a precisely computed
time in the future. So while the example above plays a
chord, the example below plays an arpeggio:

[220, 1, "@pluck -note", 1/4, "@wait",
330, 1, "@pluck -note", 1/4, "@wait",
550, 1, "@pluck -note", 1/4, "@wait"]

New parallel instruction queues can be created within a
sequence, either as one-time only sequences using @fork, as
infinitely looping sequences using @loop, or as named infi-
nite looping sequences using @spawn. The following example
plays a simple triplet over duplet hemiola:

["a", "@spawn", ["@kick", 3/4, "@wait"],
"b", "@spawn", ["@hat" , 2/4, "@wait"]]

While @wait, @fork, and @loop turn instruction queues
into resumable continuations with tightly timed scheduling,
naming a loop via @spawn allows its pattern to be re-defined
on the fly—an essential idiom of live coding [15]—by spawn-
ing the same name with a new pattern.

Parallel sequences can also carry local state, assigned via
@let and retrieved via @get; or global state can be addressed
via @set. Let-bound state is visible in any sub-queues forked
or looped, but not visible to any parent queues. Thus a
queue can share state with the patterns it creates without
clashing with names in sibling patterns.

2.5 Examples
It can be interesting to utilize the spatial organization of the
text to coordinate the temporal organization of the result.
In the grammar below, while both loop1 and loop2 have the
same syntax, the semantic action is slightly different. With
an input of "x-o-.-" loop1 produces a pattern of 16th notes
repeating every one and half beats, whereas loop2 produces
a pattern spanning one beat that contains six events.

perc = "x" { return "@kick"; }
/ "o" { return "@snare"; }
/ "-" { return "@hat"; }
/ "." // rest

loop1 = events:perc+ {
return ["@loop", events.map(

e => [e, [1/4, "@wait"]]
)];

}

loop2 = events:perc+ {
var step = 1/ events.length;
return ["@loop", events.map(

e => [e, [step , "@wait"]]
)];

}

A strategy we have found useful for some mini-language
experiments is to automatically assign spawn-names to each
new line of the input text. In this way, the input fragment
supports a flexible and stutter-free notion of each line cor-
responding to a looping layer in the musical performance:

start = lines:line* {
return lines.map(

(e, i) => [i, "@spawn", e]
);

}

line = events:perc+ "\n"? {
return events.map(

e => [e, [1/4, "@wait"]]
);

}

With the above grammar, a three-part polyrhthmic pattern
amenable to direct live manipulation can be as simple as:

x...
.o...o.x...x
.-.

3. IN USE
The system was shared with two dozen participants in a
workshop held at the 2016 International Conference on Live
Coding.2 A tutorial introduced parsing by building a lan-
guage by incrementally adding each of fifteen grammar op-
erators. We worked through a handful of common needs,
discussed common errors, and explored examples creating
musical structure with the target language and engine.

After this presentation workshop attendees had around
forty-five minutes to develop a prototype language. Three
attendees volunteered to give brief performances, none of
whom had prior experience with parsing or programming
language design. One participant presented a prototype of
system for creating serial compositions that he continued to
develop this after the workshop; it is now a MIDI sequencer
that runs in the browser, available online [18].

A simpler example by another participant converted ASCII
values of characters entered into pitch information read back
in sequence to form musical phrases, with the duration of
each note in the phrase derived from the phrase’s length,

2http://iclc.livecodenetwork.org/2016

277

generating parallel sequences of polyrhythmic percussion.
The participant was able to pull of a rousing two-minute
performance with it, a surprising feat considering that the
language was less than one hour old!3 Other participants
did not have their languages in a state they felt comfort-
able presenting as their goals were more ambitious than the
workshop duration enabled; nevertheless the feedback we
received was overwhelmingly positive.

4. DISCUSSION
Although the editor was designed primarily to support the
process of language design, there is a tantalizing invitation
to build and use a language-instrument on the fly, during a
performance. Live coding musicians perform with program-
ming languages, but hardly ever by programming languages.
This could be driven by a goal to pursue a more profound
live coding act through a “more significant intervention in
the works” [4], or it may instead play into an oft-mentioned
motivation for ‘showing your screens’ during performance to
further democratize the realm of computing (and process in
the wider society)–for example, that anyone else could start
from the same place [1]. It may also play into legibility, as
an audience member might better understand what is being
written if the grammar is grown from zero before their eyes.

Toward legibility, we are interested letting the parser au-
tomatically colourize or otherwise highlight input language
according to grammar rules. We would also like to extend
the editing interface with annotation capacities driven by
the playback engine; for example, momentarily highlighting
fragments of the input that correspond to sonic events cur-
rently triggered within sequences. Such annotations may be
generally useful sources of feedback for language designers
as well as performers and audience members.

A current weakness of the target language is the diffi-
culty of scheduling algorithmic transformations of struc-
tured data. Pattern transformation concepts such as inver-
sion and transposition are powerful means to create variety
when applied over time[16], but are not easy to define in
our target language without adding more complex opera-
tors. Related, control flow is addressed in our target lan-
guage through finite and infinite backward jumps (loops),
simple conditional branches, and the parallelism of contin-
uations, but there is no support yet for label/goto or sub-
routines. Goto may be considered harmful, but it is easy to
see how subroutine jumps could empower richer languages–
and might not be difficult to add. A more challenging but
interesting problem would be the support for instructions
in the playback engine to reach back and modify the in-
put text, performing source code manipulations as found in
ixi lang [8] and Gibber[13]. Though it is not clear whether
this would be of any use, a language might even be able to
transform its own grammar.

5. ACKNOWLEDGMENTS
Supported by the Canada Research Chairs program and
York University, Canada. Also supported by Rochester
Institute of Technology, with funding from Sponsored Re-
search Services and the Golisano College of Computing and
Information Sciences. Additionally, we would like to thank
Daniel Gómez Blasco for his extensive work refactoring the
virtual machine as a standalone library.

6. REFERENCES
[1] R. Biddle. Clickety-Click: Live Coding and Software

Engineering. In Collaboration and learning through

3https://www.youtube.com/watch?v=3T8MrcPQ9HY.

live coding (Dagstuhl Seminar 13382), volume 3,
pages 154–159. 2014.

[2] A. Blackwell and N. Collins. The programming
language as a musical instrument. Proceedings of
PPIG05 (Psychology of Programming Interest Group),
3:284–289, 2005.

[3] A. F. Blackwell. Patterns of user experience in
performance programming. In Proceedings of the
International Conference on Live Coding, pages
53–63. University of Leeds, UK, 2015.

[4] N. Collins. Live coding of consequence. Leonardo,
44(3):207–211, 2011.

[5] N. Collins and A. McLean. Algorave: A survey of the
history, aesthetics and technology of live performance
of algorithmic electronic dance music. In Proceedings
of the Conference on New Interfaces for Musical
Expression, pages 355–358, 2014.

[6] B. Ford. Parsing expression grammars: A
recognition-based syntactic foundation. In Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’04,
pages 111–122, New York, NY, USA, 2004. ACM.

[7] T. Magnusson. Designing constraints: Composing and
performing with digital musical systems. Computer
Music Journal, 34(4):62–73, 2010.

[8] T. Magnusson. ixi lang: a supercollider parasite for
live coding. In Proceedings of the International
Computer Music Conference, pages 503–506.
University of Huddersfield, 2011.

[9] T. Magnusson. ixi lang. In Collaboration and learning
through live coding (Dagstuhl Seminar 13382),
volume 3, page 150. 2014.

[10] D. Majda. Parser Generator for JavaScript.
https://pegjs.org, 2010.

[11] A. McLean. Stress and cognitive load. In
Collaboration and learning through live coding
(Dagstuhl Seminar 13382), volume 3, pages 145–146.
2014.

[12] C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the Conference on New Interfaces for Musical
Expression, 2013.

[13] C. Roberts, M. Wright, and J. Kuchera-Morin.
Beyond editing: Extended interaction with textual
code fragments. In Proceedings of the Conference on
New Interfaces for Musical Expression, pages
126–131, 2015.

[14] J. Rohrhuber, A. de Campo, and R. Wieser.
Algorithms today - notes on language design for just
in time programming. In Proceedings of the
International Computer Music Conference, pages
455–458, 2005.

[15] A. Sorensen. The Many Faces of a Temporal Recursion.
http://extempore.moso.com.au/temporal recursion.html,
2013.

[16] L. Spiegel. Manipulations of musical patterns. In
Proceedings of the Symposium on Small Computers
and the Arts, pages 19–22, 1981.

[17] TOPLAP. Manifesto.
https://toplap.org/wiki/ManifestoDraft, 2010.

[18] T. Wallace. Serialist.
http://serialist.irritantcreative.ca, 2016.

[19] G. Wang and P. R. Cook. On-the-fly programming:
using code as an expressive musical instrument. In
Proceedings of the Conference on New Interfaces for
Musical Expression, pages 138–143, 2004.

278

