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ABSTRACT 
This paper presents solutions to improve the reliability and to work 
around the challenges of using a Leap Motion™ sensor as a gestural 
control and input device in digital music instrument (DMI) design. 
We implement supervised learning algorithms, including k-nearest 
neighbors, support vector machine, binary decision tree, and artificial 
neural network, to estimate hand motion data, which is not typically 
captured by the sensor. Two problems are addressed: 1) the sensor is 
unable to detect overlapping hands 2) The sensor’s limited detection 
range. Training examples included 7 kinds of overlapping hand 
gestures as well as hand trajectories where a hand goes out of the 
sensor’s range. The overlapping gestures were treated as a 
classification problem and the best performing model was k-nearest 
neighbors with 62% accuracy. The out-of-range problem was treated 
first as a clustering problem to group the training examples into a 
small number of trajectory types, then as a classification problem to 
predict trajectory type based on the hand’s motion before going out 
of range. The best performing model was k-nearest neighbors with an 
accuracy of 30%. The prediction models were implemented in an 
ongoing multimedia electroacoustic vocal performance and 
educational project named Embodied Sonic Meditation (ESM).   
 
Author Keywords 
Gesture mapping, supervised learning in DMI design, real-time vocal 
processing, Leap Motion™ 
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1. INTRODUCTION 
1.1 The Embodied Sonic Meditation 
Embodied Sonic Meditation (ESM) is an ongoing project in gestural 
control DMI design and sound education, inspired by Pauline 
Oliveros’s “Deep Listening” practice [16] and the work of George 
Lakoff and his collaborators on embodied cognition [10]. ESM 
artistically explores the fact that we understand the world and abstract 
concepts such as music, art, and mathematics through our physical 
body and senses.  

The ESM project applies seven ancient Buddhist hand gestures 
named mudras [9] that have the hands and fingers crossed or 
overlapped, as shown in Figure 1, to trigger corresponding sonic 
effects. Meanwhile, dynamic hand motions are also mapped to the 
audio/visual system to continuously control electroacoustic voice 
manipulations and a visualization of a 4-dimensional Buddhabrot 

fractal [7]. In spring 2017, ESM is being introduced to fifteen 
undergraduate students at the College of Creative Studies at 
University of California, Santa Barbara1, as a teaching tool and a 
DMI design case study during a course named “Embodied Sonic 
Meditation – A Creative Sound Education.” 

 

 
Figure 1. Example of input gestures and output label 

1.2 Goals and Motivation 
There are many musicians have had been using hand gestures 
to control live electronic music performance. The pioneer 
works include: the Hands [24] by Michel Waisvisz in 1984, the 
Lady’s Glove [21] by Laetitia Sonami in the 1990s, the 
Sensorband [2] by Edwin van der Heide, Zbigniew Karkowski, and 
Atau Tanaka in 1994, as well as the Angry Sparrow [15] and 
Genoa by Chikashi Miyama in the late 2000’s. In 2012, Thomas 
Mitchell et al [14] first used subtle finger gestures to real-time control 
and process live vocal performance. Instead of using sensors that are 
attached to a performer’s hands, our project uses a non-attached 
optical sensor and touchless hand gestures to control a real-time 
system producing sounds and visuals, and processing voice. 

1.2.1 The Sensor and Its Current Challenges  
Because of its low price, light weight and portability, as well as a 

lower latency and higher frame rate compared to other sensors such 
as the Microsoft’s Kinect™ [22], a Leap Motion™ infrared sensor is 
chosen as our non-attached tracking sensor to realize the gestural 
instrument for ESM project. The Leap Motion™ controller is a small 
USB device that uses two monochromatic IR cameras and three 
infrared LEDs to sense hand motion in 3D space. The sensor’s field 
of view is an inverted pyramid with angles of 150◦ and a height of 
roughly 60cm, as shown in Figure 2. It provides information about 
the identity and motion of both hands and their corresponding fingers 
(position, velocity, normal vector of palm, etc.) in the form of a 
frame, which is easily accessible through a developer API2. The 
controller is well suited to music applications due to its performance 
in recognizing subtle hand and finger movements.  

                                                                    

1 https://www.ccs.ucsb.edu/ 
2 https://developer.leapmotion.com/ 
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Figure 2. The coordinates of Leap Motion interactionBox 

 
However, the sensor’s small range greatly limits the 

expressiveness of a performer’s natural hand motions during a live 
performance, impeding the exploration of a user’s body-mind 
connectivity. The inverted pyramid shape of the sensor’s tracking 
range makes it difficult for users to keep their hand movements in 
range. Moreover, the sensor cannot track any gestural input when 
two hands/fingers are close to each other, or overlap above the 
sensor. The sensor typically generates no output in these two 
situations, and is essentially “frozen.”  

These sensor limitations cause errors, which heavily interrupt the 
audio-visual system – either no data or discontinuous data will be 
sent to the audio-video engine, interrupting the smoothness and 
enjoyment of the user experience. In practice, the sensor is unreliable 
whenever the user’s hands move outside the tracking range (such as 
with larger, more theatrical gestures) or overlap (for example, 
working with sign languages). 

1.2.2 Research Goal 
Since we require the ability to allow the above kinds of difficult-to-
track gestures in our project, the ideal ESM system should be able to 
track hand movement and process continuous data without 
unpredictable output errors. Our research aims to predict the hands’ 
trajectories when they are out of the sensing range, and to classify 
overlapping hand gestures in real-time, with minimum errors. Both 
instances are approached using machine learning and are framed as 
classification problems. Our optimization method should be able to 
predict a time series of what it guesses the user’s hands might be 
doing while out of range, or overlapping. To the best of our 
knowledge, these challenges have not yet been explored within the 
NIME community for gestural control DMI design. We hope that our 
preliminary research shows the general potential of applying machine 
learning to create robust DMIs using accessible but unreliable sensors 
combined with machine learning.  

2. BACKGROUND 
2.1 The Leap Motion™ Controller at NIME 
Due to the limited space, the large corpus of musical applications 
cannot be recapitulated completely here. We mainly pinpoint the 
closest related works that evaluate the sensor’s tracking 

capability/challenges of gestural input and control in DMI design and 
live performance.  Silva et. al [19] and Han et. al [8] evaluate the 
sensor’s performance and implementations in keyboard instruments, 
and found that the sensor has limitations and tracking difficulties 
when fingers are close to each other. Occlusion plays a great part in 
the errors. In a NIME2015 concert, Yemin Oh performed Space in 
Hands, where he used the sensor to track hand position to control the 
array of surrounding speakers. In order to reduce sensor errors, he 
installed an LED light under the sensor to optimize the optical 
environment. This indeed can improve the tracking data when hands 
move slowly and finger/hand gestures are simple enough; but does 
not solve the overlap or the out of range problems. Fiebrink et al. 
developed Wekinator [5], a cross-platform, open source free software 
that applies machine learning to artists’ and musicians’ work in real-
time; Leap Motion™ is one of the selected gestural interface that 
suits the system. One of the uses of Wekinator is to make accurate 
classifications from noisy sensors. However, Wekinator does not 
support offline data processing, visualisation, segmentation, feature 
comparison, etc. It is necessary to do the analysis for our project.  

2.2 Related Work in Machine Learning 
We treat the hands-out-of-range issue as a motion-tracking problem. 
Choi and Hebert use Markov models to predict a pedestrian’s 
trajectory based on past movement [17]. Our case is subtler because 
of the intricate finger and hand movements involved. Vasquez and 
Fraichard used a cluster-based technique, including a learning 
algorithm and an estimation algorithm to solve the problem [4]. The 
cluster-based method is an effective way to predict the trajectory of a 
moving object. In addition, Pierre Payeur approached the prediction 
problem with neural networks, which are well suited for 
simultaneous anticipation of position, orientation, velocity, and 
acceleration of an object [11]. We have adapted these algorithms for 
the prediction of out-of-range hand motions. 
 We treat the hands-overlapping issue as a classification problem: 
predict the true hand gesture when the sensor cannot detect both 
hands. A robust approach using a novel combination of features is 
critical to the performance of the prediction. Marin shows that 
fingertip altitudes and angles are good indicators in the prediction 
[6]. Funasaka applies the K-Nearest Neighbor method to classify 26 
gestures, and the recognition rate is 72.78% [3]. The use of SVM 
improves the recognition rate to 79.83%. We apply these methods for 
this project’s prediction model. 

3. SYSTEM OVERVIEW 
The performer gives the system two inputs: vocals via a microphone, 
and hand gestures and motions via a Leap Motion™ sensor. The 
OSC protocol enables communications between Chuck [25] software 
for audio processing, and Python software for sensing and visual 
processing. Recognition of one of the 7 Mudras triggers the 
corresponding sound, while continuous hand motions control 2 
sound filters and 4 effects for real-time vocal processing, as well as 
the visualization of a 4-dimensional Buddhabrot’s trajectory 
deformation. Finally, the resulting sounds and graphics are amplified 
and projected into the performance space. Figure 3 shows the overall 
system architecture. 

 
Figure 3. The general overview of the system 
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4. GESTURAL DESIGN AND MAPPING 
Mapping the 7 Mudras gestures to trigger sonic outputs was 
originally impossible for the ESM project before we added the 
machine-learning component for gesture recognition. When the 
classifier recognizes a particular Mudra, it sends the detected type to 
Chuck, which plays the corresponding sound clip. 

There are also six ways that hand motions are mapped to 
continuously manipulate the real-time vocal processing:  

a) For the right hand: 
1) Three-fingers’ vertical movement -> granular effects;  
2) Horizontal movement -> spatial panning; 
3) Vertical movement -> roll-off of a Spectral Tilt filter [20] 
b) For the left hand:   
1) Horizontal movement -> frequency of a second-order 

“peaking equalizer” aka “throat-singer's formant emphasis filter.” 
This filter efficiently simulates the vocal technique of Tibetan throat 
singing that emphasizes frequencies corresponding to particular 
harmonic overtones.  When the left hand is at the most left from the 
sensor’s center, this filter emphasizes the 2nd harmonic partial; when 
the left hand is closest to the sensor’s center position, the filter 
emphasizes the 13th harmonic partial.  

2) When the thumb and index finger touch (a “pinch” gesture), 
the vertical movement shifts the pitch of the simulated Tibetan throat 
singing – higher distance controls higher pitch, and vice versa. 

3) The horizontal distance between two hands controls a delay 
effect’s parameter.  The delay time is proportional to distance; when 
two hands are closest to each other, all effects are switched off. 

5. DATA SET AND FEATURES 
5.1 Data Acquisition 
Our project is not attempting to predict all human hand motion in the 
general case; we train our machine learning models to predict and 
recognize only a certain subset of gestures and hand positions 
relevant to this specific project.  Therefore we acquired our training 
dataset by recording the first author’s hand movements in context 
using the Leap Motion. Although hand movements are continuous, 
the Leap Motion sensor discretizes them with sampling rate 60 
frames per second. 

5.1.1 Hands Out of Range 
As detailed in Section 1.2.1, the Leap Motion sensor has only a 
limited range that is often too constrained for the desired performance 
practice.  When the hand leaves this range we would like to predict 
its motion until it comes back into range.   So in order to record the 
hand’s true motion while out of the sensor’s range, we used a second 
Leap Motion placed 34 cm to the side, as shown in Figure 4. The 
master Leap Motion mimicked the sensor used for performances, 
while the slave Leap Motion accurately senses hand information 
while it is out of the sensing range of the master Leap Motion.  We 
assume left/right symmetry of the possible hand movements in the 
performance, so for the sake of simplicity we recorded data for only 
right-hand out-of-range gestures. 
 To reconcile the data from the two Leap Motion devices, we 
synchronized the two corresponding computers with ntplib, a Python 
module that offers a simple interface to query NTP servers3. We 
were thus able to start the control programs of the two devices 
simultaneously and match the time stamp. We used the last 15 data 
frames of the master Leap Motion before it detected the right hand 
going out of its sensing range and all the data frames of the slave 
Leap Motion from the time that the right hand went outside the 
sensing range of the master Leap Motion to the time that it came 
back into the sensing range or went outside the sensing range of the 
slave Leap Motion™. 

                                                                    
3 https://pypi.python.org/pypi/ntplib/ 

 Our dataset contains 292 examples extracted from recorded 
training data; we split them randomly into training set (80% of 
examples) and test set (20% of examples). 

 
Figure 4. Leap Motion system setup (left) and right-handed 

coordinate system (right) 

5.1.2 Overlapping Gestures  
The Leap Motion sensor’s outputs become inconsistent when two 
hands overlap above it. Since many of the mudras used in real 
performance involve overlapping hands, we would like to use the 
recorded data using a single Leap Motion before two hands overlap 
to predict and classify different mudras. If any of the following 
criteria are satisfied, then we regard the current hand positions as 
overlapping: 

(a) The distance between the two palms is less than 10cm.  
(b) The Leap Motion cannot detect left hand.  
(c) The Leap Motion cannot detect right hand.  
(d) The Leap Motion can detect neither hand.  

We used the last 10 data frames of hand movements before the Leap 
Motion detects overlapping. Our dataset contains 435 examples 
(around 60 examples for each mudra) extracted from recorded 
training data; we split them randomly into training set (70% of 
examples) and test set (30% of examples). 
 
5.2 Features 
5.2.1 Hands Out of Range 
Our training examples contain frames of raw data recorded by the 
two Leap Motion sensors. Within each time frame, we selected 19 
features: hand position on x, y and z axes, hand velocity on x, y and z 
axes, hand palm normal on x, y and z axes, finger altitude for each of 
the five fingers, and finger pan for each of the five fingers. Since we 
would like to learn a pattern of hand movements, each training 
example is a time series consisting of 15 frames of these 19 features, 
represented as a vector of 285 real numbers. 

5.2.2 Overlapping Gestures 
We selected features for overlapping gesture classification by plotting 
examples in Matlab for the seven mudras and choosing the features 
which had relatively apparent differences over the seven categories. 
We selected these 8 most important features: hand palm normal on x, 
y and z-axes, and finger altitude for each of the five fingers. These 
plots showed that the last 10 frames of data were relatively consistent 
because both hands tried to maintain the gesture, so we preprocessed 
the data by taking a moving average over the last 10 frames. We also 
tried batch normalization, but in our experiments it did not improve 
test accuracy. For SVM model that will be discussed in Section 6.2, 
we reduced the number of features to only 3 (palm normal on x, y 
and z axes) to relieve over-fitting problem. 

6. METHODS 
6.1 Movement Prediction for Hands Out of 
Range 
6.1.1 Trajectory Clustering 
The out-of-range training data consist of multiple different 
trajectories. We used an approach taken by Vasequez, which 
assumes that there are a certain number of typical trajectories taken 
by the hand [4]. This reduced the problem to grouping these 
trajectories into categories using an unsupervised method, predicting 
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the category for each new trajectory, and applying the average 
trajectory of the predicted category to use for the audio-video 
synthesis.  

The trajectories were clustered using a k-means algorithm, which 
is as follows: 
1. Randomly initialize the k cluster centroids µ1,..,µk ∈ Rn 
2. Repeat until convergence { 
    For each trajectory i, set 

                              
        
    For each cluster j, set 

                               
} 
where {x(1), ... , x(m)} are the training data, µj represents each cluster 
centroid (in other words, the cluster’s average trajectory, which will 
ultimately be the output of the movement prediction), and k is the 
number of clusters. The algorithm was implemented using Matlab’s 
Statistics and Machine Learning Toolbox4.   

The number of clusters was determined using the elbow method, a 
standard practice which looks at the percentage of variance explained 
as a function of the number of clusters [23]. This plot usually looks 
like an elbow, and the bend represents a typically good number of 
clusters. The elbow method plot is shown in Figure 5; it suggests 
k=10 clusters.  This also corresponds with the performer’s 
introspective analysis that there are 5 to 10 main types of trajectories. 

   Figure 5. Elbow method for k-means clustering 

6.1.2 Trajectory Classification 
Once the training trajectories were clustered, we tried three different 
classification algorithms to assign new trajectories to the appropriate 
cluster: support vector machine (SVM), binary decision tree, and K-
Nearest Neighbors (KNN). The algorithms were implemented for 
testing using Matlab’s Statistics and Machine Learning Toolbox, and 
the best one was incorporated into the Leap Motion system using the 
Python library scikit5. 

Support vector machine (SVM) is a powerful and popular 
machine learning technique for multi-class classification. It first does 
an implicit mapping of data into a higher dimensional feature space. 
Secondly, it finds a linear separating hyperplane with the maximal 
margin to separate data in this higher dimensional space. For a 
training set 

(xi, yi), i = 1,..., l 
where  
                                                    xi ∈ Rn 
and 

yi ∈ 1,−1 
 

and, l is the number of training examples. Then a test example x is 
classified by:  
                                                                    
4 https://www.mathworks.com/products/statistics/ 
5 http://scikit-learn.org/stable/ 

                                  
where αi  are Lagrange multipliers of a dual optimization problem 
that describe the separating hyperplane, K(·,·) is a kernel function, 
and b is the threshold parameter of the hyperplane. The training 
samples xi with αi > 0 are called support vectors, and SVM finds the 
hyperplane that maximizes the distance between the support vectors 
and the hyperplane. Given a non-linear mapping Φ that embeds the 
input data into the high-dimensional space, kernels have the form of 
K(xi,xj) = (Φ(xi) · Φ(xj)). SVM allows domain-specific selection of 
the kernel function. Though new kernels are being proposed, the 
most frequently used kernel functions are the linear, polynomial, and 
Radial Basis Function (RBF) kernels. Since SVM only makes binary 
decisions, the classification is fulfilled by only using the one-only 
technique – to train classifiers to discriminate one expression from 
other expressions [26]. 

There are advantages of using SVM to solve this problem. First, it 
has a strong founding theory based on gradient descent and binary 
decision-making. In our classifying problem, the yes or no decision-
making is all we need for each prediction. Second, global optimum is 
guaranteed in SVM algorithm. Third, we do not need to worry about 
choosing proper number of parameters for SVM model [3]. 

K-nearest neighbors (KNN) were chosen, as it is a fairly simple 
classification algorithm that can be used for quick predictions. KNN 
works by storing all available cases and will classify new cases based 
on a similarity measure known as the distance function. A case is 
compared to its k nearest neighbors, and is classified to be the 
classification that is most common among its neighbors. We used 
simple Euclidean distance 

                                      
where d is the distance, x is the trained example, y is the test point, 
and m is the number of features, in our case, m=285. The relationship 
between the number of nearest neighbors, k, and the test/training 
error (Figure 6) was investigated to determine the ideal k value [1]. 
We chose k=20 for a good balance between low test error and model 
complexity. 

Figure 
6. Train and test error vs. 

the number of nearest neighbors (k) 
 

6.2 Overlapping Gesture Classifications 
To classify overlapping gestures, we trained three classifiers 
including multi-class Support Vector Machine (SVM), k-nearest 
Neighbor (k-NN) in scikit-learn and neural network in Fast Artificial 
Neural Network (FANN) Library. We did experiments to find out the 
best classification model with the highest test accuracy. 

For the SVM, we took “one-against-one” approach [18] for multi-
class classification. If n is the number of classes to be classified into, 
then n*(n-1)/2 classifiers are built and each classifier discriminates 
between two classes. We used the Radial Basis Function (RBF) 
kernel: K(x,x′) = exp(−γ|x − x′|2), in which γ defines how much 
influence a single training example has and is selected automatically. 
For decision function, each classifier puts in a vote as to what the 
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correct answer is and the output returns the class with the most votes. 
We used k-NN for supervised nearest neighbor classification. The 

key hyper-parameter of k-NN is the predefined number k of training 
examples closest in distance to the new point and the predicted label 
is based on the majority votes of its k nearest neighbors. We did 
experiment on how the choice of k would affect training and test 
accuracy and found that k=8 generated the highest test accuracy, as 
shown in Figure 7. 

Figure 7. Train and test accuracy vs. the number of  
the nearest neighbors k 

Furthermore, we developed a neural network classification model. 
Because the prediction of mudras needed to be in real-time, we used 
Fast Artificial Neural Network (FANN) Library6. FANN is a free 
open source neural network library, which implements multilayer 
feed forward neural networks in C using back-propagation training. 
FANN is very easy to use, versatile, and fast, making it a good choice 
for real-time classification. We implemented the classification model 
using FANN’s Python binding. We implemented the neural network 
structure with 3 layers (input, hidden, and output) and 64 hidden 
neurons. We set the hyper-parameters to connection rate = 1, learning 
rate = 0.7, and we trained during 10000 epochs using sigmoid as the 
activation function and RPROP as the training algorithm. 

7. RESULTS  
7.1 Movement Prediction for Hands Out-Of-Range 
The classification models described Section 6.1.2 were implemented 
in Matlab and tested using holdout cross validation. The training and 
test accuracy are shown in Table 1 as an average of 10 different 
holdout sets. Additionally, the average prediction time over 10 
predictions (all in Matlab on the same computer) is shown for 
comparison. KNN was chosen as the best prediction method as it 
provided the best test accuracy of 30 ± 4%, where chance is 10%. 
KNN is also sufficiently fast and performed in this case in under 
1/60ms, the refresh time of the Leap Sensor. The test accuracy is low 
for all methods, likely due in large part to the quality of the recorded 
training data. The training examples were difficult to sort through and 
many may have been inconsistent with typical trajectories. However, 
the nature of this task is such that, if a trajectory prediction is 
incorrect, the chosen trajectory is likely similar to the ideal case. This 
will mean that the music generation will not be that far off from what 
it should have been. Ultimately, any prediction is better than 
dropping motion data. 

 
                                                                    
6 http://leenissen.dk/fann/wp/ 

Table 1. Test accuracy of SVM, BDT and KNN models 

7.2 Overlapping Gesture Classification 
We implemented all three models mentioned in Section 6.2 and tried 
to get the best accuracy on the test set, which is summarized in Table 
2. Since the prediction time is also an important component to be 
considered in real-time performance, we timed each model and the 
result is summarized in Table 3. Our best k-NN model with k = 8 
achieves the best result of 62% average test accuracy. The prediction 
time of k-NN model is 3.90ms, which is short enough for real-time 
performance. The k-NN predictor is sufficiently fast to achieve real-
time performance and is the most accurate so it seems to be the best 
choice. The Neural Network likely performed poorly because our 
date set only includes 435 examples, lower than most successful 
typical Neural Network implementations. 

We visualized the normalized confusion matrix of the best k-NN 
model to examine its performance, as shown in Figure 8. The color 
shading corresponds to the discrete of prediction, while the numbers 
within the matrix correspond to the normalized prediction. From the 
confusion matrix, we can see that some classes are harder to classify 
than others. For example, the algorithm misclassified a large portion 
of mudra 6 as mudra 1. This is pretty reasonable, as the relative 
position of each finger is relatively similar in mudra 6 and mudra 1.  
However, the diagonal of the confusion matrix is fairly high, 
suggesting an acceptable correct prediction ratio.   

                        
      Table 2. Test accuracy of SVM, k-NN and NN models 

 

Table 3. Prediction time of SVM, k-NN and NN models 

 
Figure 8. Confusion matrix of the best k-NN model 

8. DISCUSSION AND FUTURE WORK 
We attempted to solve two problems that arise when a Leap 
Motion™ sensor is used as part of a musical instrument. First, the 
sensor cannot detect overlapping hand or finger motions, which were 
important for musical applications. We implemented three different 

 SVM NN k-NN 
Predict time(ms) 5.48 0.03 3.90 
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algorithms to predict hand gestures while the hands were overlapped 
and ended up choosing to use KNN as it gave an average test 
accuracy of 62%. KNN is ideal for the predictions as it can provide 
fast predictions needed for the real-time audio-visual generation.  
 As future work, despite the fact that Leap Motion™ cannot detect 
hands when they are overlapped, it still can record the raw images by 
using infrared stereo cameras as tracking sensors. It is possible to 
classify the mudra that is using these camera images as input. As the 
input data are lower level and more complete, it can give a better 
performance on classification. However, this approach will make the 
problem even more complicated and run into another research topic 
and expertise – Computer Vision.    

Additionally, the sensor has a limited range, so the lost trajectory 
data were predicted using a combination of k-means for clustering 
and KNN for classification. The algorithm only predicted the correct 
trajectory type 30% of the time, suggesting that there is room for 
improvement. Future work would look in to more carefully recording 
and processing the training data, as well as tweaking the classification 
algorithm parameters. This is a major problem that can generally 
affect every user of the sensor. For the specific ESM system, without 
our system optimization solutions, gestural input data from Leap 
Motion would be dropped when the sensor cannot detect the hand(s) 
or fingers, thus interrupting the coherence and smoothness of the 
real-time audio-visual output during the live performance or user 
experience; with our system optimization solutions, the trajectory is 
predicted. Instead of nothing, at least there are some data to be 
processed, improving the coherence and wholeness of the 
performance. In other words, even a made-up trajectory is better than 
having the data completely drop out. Additionally, the music 
generation algorithms could be chosen such that prediction mistakes 
are not obvious.  

We believe we can improve the training results by increasing our 
training database, using extra slave sensors, and further observing 
typical movements by the performer. This would open up the full 
potential of a neural network approach. 

Moreover, since our analysis provide methods to choose the good 
features from the mudra movement, it seems likely that an interactive 
machine learning approach like Wekinator’s could be applied for the 
classification components of this problem. This could lead to a more 
accurate and useful system than the current offline machine learning 
approach. Specifically, an interactive approach would allow the 
performer to identify types of gestures the system is misclassifying, 
then immediately provide corrective training examples to help fix 
these errors. 

At the time of writing, Leap Motion has just newly built their next-
generation system Leap Motion Mobile7, designed to be mounted on 
a VR headset, with a 180×180° field of view. This can already 
partially solve the out-of-range problem at the hardware level. It is 
reasonable to expect that we will achieve better results with the new 
equipment. We look forward to running tests and experiments on the 
Leap Motion Mobile in the near future and evaluating its 
performance specifically in music applications and DMI design.  
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