
Towards Robust Tracking with an Unreliable Motion
Sensor Using Machine Learning

J. Cecilia Wu

Media Arts and Technology
UC Santa Barbara. CA

93106, U.S.A.
 cecilia@mat.ucsb.edu

Yijun Zhou
Mark Rau
Yun Zhang

CCRMA, Stanford University, CA
94305, U.S.A.

yjz@stanford.edu
  mrau@ccrma.stanford.edu
 yunzhang@stanford.edu

Matthew James Wright

CCRMA, Stanford University, CA
94305, U.S.A.

matt@ccrma.stanford.edu

ABSTRACT
This paper presents solutions to improve the reliability and to work
around the challenges of using a Leap Motion™ sensor as a gestural
control and input device in digital music instrument (DMI) design.
We implement supervised learning algorithms, including k-nearest
neighbors, support vector machine, binary decision tree, and artificial
neural network, to estimate hand motion data, which is not typically
captured by the sensor. Two problems are addressed: 1) the sensor is
unable to detect overlapping hands 2) The sensor’s limited detection
range. Training examples included 7 kinds of overlapping hand
gestures as well as hand trajectories where a hand goes out of the
sensor’s range. The overlapping gestures were treated as a
classification problem and the best performing model was k-nearest
neighbors with 62% accuracy. The out-of-range problem was treated
first as a clustering problem to group the training examples into a
small number of trajectory types, then as a classification problem to
predict trajectory type based on the hand’s motion before going out
of range. The best performing model was k-nearest neighbors with an
accuracy of 30%. The prediction models were implemented in an
ongoing multimedia electroacoustic vocal performance and
educational project named Embodied Sonic Meditation (ESM).

Author Keywords
Gesture mapping, supervised learning in DMI design, real-time vocal
processing, Leap Motion™

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and Music
Computing. H.5.2 [Information Interfaces and Presentation] User
Interfaces --- Input devices and strategies (e.g., mouse, touchscreen).
I.5.2 [Pattern Recognition]: Design Methodology—Classifier design
and evaluation

1. INTRODUCTION
1.1 The Embodied Sonic Meditation
Embodied Sonic Meditation (ESM) is an ongoing project in gestural
control DMI design and sound education, inspired by Pauline
Oliveros’s “Deep Listening” practice [16] and the work of George
Lakoff and his collaborators on embodied cognition [10]. ESM
artistically explores the fact that we understand the world and abstract
concepts such as music, art, and mathematics through our physical
body and senses.

The ESM project applies seven ancient Buddhist hand gestures
named mudras [9] that have the hands and fingers crossed or
overlapped, as shown in Figure 1, to trigger corresponding sonic
effects. Meanwhile, dynamic hand motions are also mapped to the
audio/visual system to continuously control electroacoustic voice
manipulations and a visualization of a 4-dimensional Buddhabrot

fractal [7]. In spring 2017, ESM is being introduced to fifteen
undergraduate students at the College of Creative Studies at
University of California, Santa Barbara1, as a teaching tool and a
DMI design case study during a course named “Embodied Sonic
Meditation – A Creative Sound Education.”

Figure 1. Example of input gestures and output label

1.2 Goals and Motivation
There are many musicians have had been using hand gestures
to control live electronic music performance. The pioneer
works include: the Hands [24] by Michel Waisvisz in 1984, the
Lady’s Glove [21] by Laetitia Sonami in the 1990s, the
Sensorband [2] by Edwin van der Heide, Zbigniew Karkowski, and
Atau Tanaka in 1994, as well as the Angry Sparrow [15] and
Genoa by Chikashi Miyama in the late 2000’s. In 2012, Thomas
Mitchell et al [14] first used subtle finger gestures to real-time control
and process live vocal performance. Instead of using sensors that are
attached to a performer’s hands, our project uses a non-attached
optical sensor and touchless hand gestures to control a real-time
system producing sounds and visuals, and processing voice.

1.2.1 The Sensor and Its Current Challenges
Because of its low price, light weight and portability, as well as a

lower latency and higher frame rate compared to other sensors such
as the Microsoft’s Kinect™ [22], a Leap Motion™ infrared sensor is
chosen as our non-attached tracking sensor to realize the gestural
instrument for ESM project. The Leap Motion™ controller is a small
USB device that uses two monochromatic IR cameras and three
infrared LEDs to sense hand motion in 3D space. The sensor’s field
of view is an inverted pyramid with angles of 150◦ and a height of
roughly 60cm, as shown in Figure 2. It provides information about
the identity and motion of both hands and their corresponding fingers
(position, velocity, normal vector of palm, etc.) in the form of a
frame, which is easily accessible through a developer API2. The
controller is well suited to music applications due to its performance
in recognizing subtle hand and finger movements.

1 https://www.ccs.ucsb.edu/
2 https://developer.leapmotion.com/

42

Figure 2. The coordinates of Leap Motion interactionBox

However, the sensor’s small range greatly limits the

expressiveness of a performer’s natural hand motions during a live
performance, impeding the exploration of a user’s body-mind
connectivity. The inverted pyramid shape of the sensor’s tracking
range makes it difficult for users to keep their hand movements in
range. Moreover, the sensor cannot track any gestural input when
two hands/fingers are close to each other, or overlap above the
sensor. The sensor typically generates no output in these two
situations, and is essentially “frozen.”

These sensor limitations cause errors, which heavily interrupt the
audio-visual system – either no data or discontinuous data will be
sent to the audio-video engine, interrupting the smoothness and
enjoyment of the user experience. In practice, the sensor is unreliable
whenever the user’s hands move outside the tracking range (such as
with larger, more theatrical gestures) or overlap (for example,
working with sign languages).

1.2.2 Research Goal
Since we require the ability to allow the above kinds of difficult-to-
track gestures in our project, the ideal ESM system should be able to
track hand movement and process continuous data without
unpredictable output errors. Our research aims to predict the hands’
trajectories when they are out of the sensing range, and to classify
overlapping hand gestures in real-time, with minimum errors. Both
instances are approached using machine learning and are framed as
classification problems. Our optimization method should be able to
predict a time series of what it guesses the user’s hands might be
doing while out of range, or overlapping. To the best of our
knowledge, these challenges have not yet been explored within the
NIME community for gestural control DMI design. We hope that our
preliminary research shows the general potential of applying machine
learning to create robust DMIs using accessible but unreliable sensors
combined with machine learning.

2. BACKGROUND
2.1 The Leap Motion™ Controller at NIME
Due to the limited space, the large corpus of musical applications
cannot be recapitulated completely here. We mainly pinpoint the
closest related works that evaluate the sensor’s tracking

capability/challenges of gestural input and control in DMI design and
live performance. Silva et. al [19] and Han et. al [8] evaluate the
sensor’s performance and implementations in keyboard instruments,
and found that the sensor has limitations and tracking difficulties
when fingers are close to each other. Occlusion plays a great part in
the errors. In a NIME2015 concert, Yemin Oh performed Space in
Hands, where he used the sensor to track hand position to control the
array of surrounding speakers. In order to reduce sensor errors, he
installed an LED light under the sensor to optimize the optical
environment. This indeed can improve the tracking data when hands
move slowly and finger/hand gestures are simple enough; but does
not solve the overlap or the out of range problems. Fiebrink et al.
developed Wekinator [5], a cross-platform, open source free software
that applies machine learning to artists’ and musicians’ work in real-
time; Leap Motion™ is one of the selected gestural interface that
suits the system. One of the uses of Wekinator is to make accurate
classifications from noisy sensors. However, Wekinator does not
support offline data processing, visualisation, segmentation, feature
comparison, etc. It is necessary to do the analysis for our project.

2.2 Related Work in Machine Learning
We treat the hands-out-of-range issue as a motion-tracking problem.
Choi and Hebert use Markov models to predict a pedestrian’s
trajectory based on past movement [17]. Our case is subtler because
of the intricate finger and hand movements involved. Vasquez and
Fraichard used a cluster-based technique, including a learning
algorithm and an estimation algorithm to solve the problem [4]. The
cluster-based method is an effective way to predict the trajectory of a
moving object. In addition, Pierre Payeur approached the prediction
problem with neural networks, which are well suited for
simultaneous anticipation of position, orientation, velocity, and
acceleration of an object [11]. We have adapted these algorithms for
the prediction of out-of-range hand motions.
 We treat the hands-overlapping issue as a classification problem:
predict the true hand gesture when the sensor cannot detect both
hands. A robust approach using a novel combination of features is
critical to the performance of the prediction. Marin shows that
fingertip altitudes and angles are good indicators in the prediction
[6]. Funasaka applies the K-Nearest Neighbor method to classify 26
gestures, and the recognition rate is 72.78% [3]. The use of SVM
improves the recognition rate to 79.83%. We apply these methods for
this project’s prediction model.

3. SYSTEM OVERVIEW
The performer gives the system two inputs: vocals via a microphone,
and hand gestures and motions via a Leap Motion™ sensor. The
OSC protocol enables communications between Chuck [25] software
for audio processing, and Python software for sensing and visual
processing. Recognition of one of the 7 Mudras triggers the
corresponding sound, while continuous hand motions control 2
sound filters and 4 effects for real-time vocal processing, as well as
the visualization of a 4-dimensional Buddhabrot’s trajectory
deformation. Finally, the resulting sounds and graphics are amplified
and projected into the performance space. Figure 3 shows the overall
system architecture.

Figure 3. The general overview of the system

43

4. GESTURAL DESIGN AND MAPPING
Mapping the 7 Mudras gestures to trigger sonic outputs was
originally impossible for the ESM project before we added the
machine-learning component for gesture recognition. When the
classifier recognizes a particular Mudra, it sends the detected type to
Chuck, which plays the corresponding sound clip.

There are also six ways that hand motions are mapped to
continuously manipulate the real-time vocal processing:

a) For the right hand:
1) Three-fingers’ vertical movement -> granular effects;
2) Horizontal movement -> spatial panning;
3) Vertical movement -> roll-off of a Spectral Tilt filter [20]
b) For the left hand:
1) Horizontal movement -> frequency of a second-order

“peaking equalizer” aka “throat-singer's formant emphasis filter.”
This filter efficiently simulates the vocal technique of Tibetan throat
singing that emphasizes frequencies corresponding to particular
harmonic overtones. When the left hand is at the most left from the
sensor’s center, this filter emphasizes the 2nd harmonic partial; when
the left hand is closest to the sensor’s center position, the filter
emphasizes the 13th harmonic partial.

2) When the thumb and index finger touch (a “pinch” gesture),
the vertical movement shifts the pitch of the simulated Tibetan throat
singing – higher distance controls higher pitch, and vice versa.

3) The horizontal distance between two hands controls a delay
effect’s parameter. The delay time is proportional to distance; when
two hands are closest to each other, all effects are switched off.

5. DATA SET AND FEATURES
5.1 Data Acquisition
Our project is not attempting to predict all human hand motion in the
general case; we train our machine learning models to predict and
recognize only a certain subset of gestures and hand positions
relevant to this specific project. Therefore we acquired our training
dataset by recording the first author’s hand movements in context
using the Leap Motion. Although hand movements are continuous,
the Leap Motion sensor discretizes them with sampling rate 60
frames per second.

5.1.1 Hands Out of Range
As detailed in Section 1.2.1, the Leap Motion sensor has only a
limited range that is often too constrained for the desired performance
practice. When the hand leaves this range we would like to predict
its motion until it comes back into range. So in order to record the
hand’s true motion while out of the sensor’s range, we used a second
Leap Motion placed 34 cm to the side, as shown in Figure 4. The
master Leap Motion mimicked the sensor used for performances,
while the slave Leap Motion accurately senses hand information
while it is out of the sensing range of the master Leap Motion. We
assume left/right symmetry of the possible hand movements in the
performance, so for the sake of simplicity we recorded data for only
right-hand out-of-range gestures.
 To reconcile the data from the two Leap Motion devices, we
synchronized the two corresponding computers with ntplib, a Python
module that offers a simple interface to query NTP servers3. We
were thus able to start the control programs of the two devices
simultaneously and match the time stamp. We used the last 15 data
frames of the master Leap Motion before it detected the right hand
going out of its sensing range and all the data frames of the slave
Leap Motion from the time that the right hand went outside the
sensing range of the master Leap Motion to the time that it came
back into the sensing range or went outside the sensing range of the
slave Leap Motion™.

3 https://pypi.python.org/pypi/ntplib/

 Our dataset contains 292 examples extracted from recorded
training data; we split them randomly into training set (80% of
examples) and test set (20% of examples).

Figure 4. Leap Motion system setup (left) and right-handed

coordinate system (right)

5.1.2 Overlapping Gestures
The Leap Motion sensor’s outputs become inconsistent when two
hands overlap above it. Since many of the mudras used in real
performance involve overlapping hands, we would like to use the
recorded data using a single Leap Motion before two hands overlap
to predict and classify different mudras. If any of the following
criteria are satisfied, then we regard the current hand positions as
overlapping:

(a) The distance between the two palms is less than 10cm.
(b) The Leap Motion cannot detect left hand.
(c) The Leap Motion cannot detect right hand.
(d) The Leap Motion can detect neither hand.

We used the last 10 data frames of hand movements before the Leap
Motion detects overlapping. Our dataset contains 435 examples
(around 60 examples for each mudra) extracted from recorded
training data; we split them randomly into training set (70% of
examples) and test set (30% of examples).

5.2 Features
5.2.1 Hands Out of Range
Our training examples contain frames of raw data recorded by the
two Leap Motion sensors. Within each time frame, we selected 19
features: hand position on x, y and z axes, hand velocity on x, y and z
axes, hand palm normal on x, y and z axes, finger altitude for each of
the five fingers, and finger pan for each of the five fingers. Since we
would like to learn a pattern of hand movements, each training
example is a time series consisting of 15 frames of these 19 features,
represented as a vector of 285 real numbers.

5.2.2 Overlapping Gestures
We selected features for overlapping gesture classification by plotting
examples in Matlab for the seven mudras and choosing the features
which had relatively apparent differences over the seven categories.
We selected these 8 most important features: hand palm normal on x,
y and z-axes, and finger altitude for each of the five fingers. These
plots showed that the last 10 frames of data were relatively consistent
because both hands tried to maintain the gesture, so we preprocessed
the data by taking a moving average over the last 10 frames. We also
tried batch normalization, but in our experiments it did not improve
test accuracy. For SVM model that will be discussed in Section 6.2,
we reduced the number of features to only 3 (palm normal on x, y
and z axes) to relieve over-fitting problem.

6. METHODS
6.1 Movement Prediction for Hands Out of
Range
6.1.1 Trajectory Clustering
The out-of-range training data consist of multiple different
trajectories. We used an approach taken by Vasequez, which
assumes that there are a certain number of typical trajectories taken
by the hand [4]. This reduced the problem to grouping these
trajectories into categories using an unsupervised method, predicting

44

the category for each new trajectory, and applying the average
trajectory of the predicted category to use for the audio-video
synthesis.

The trajectories were clustered using a k-means algorithm, which
is as follows:
1. Randomly initialize the k cluster centroids µ1,..,µk ∈ Rn
2. Repeat until convergence {
 For each trajectory i, set

 For each cluster j, set

}
where {x(1), ... , x(m)} are the training data, µj represents each cluster
centroid (in other words, the cluster’s average trajectory, which will
ultimately be the output of the movement prediction), and k is the
number of clusters. The algorithm was implemented using Matlab’s
Statistics and Machine Learning Toolbox4.

The number of clusters was determined using the elbow method, a
standard practice which looks at the percentage of variance explained
as a function of the number of clusters [23]. This plot usually looks
like an elbow, and the bend represents a typically good number of
clusters. The elbow method plot is shown in Figure 5; it suggests
k=10 clusters. This also corresponds with the performer’s
introspective analysis that there are 5 to 10 main types of trajectories.

 Figure 5. Elbow method for k-means clustering

6.1.2 Trajectory Classification
Once the training trajectories were clustered, we tried three different
classification algorithms to assign new trajectories to the appropriate
cluster: support vector machine (SVM), binary decision tree, and K-
Nearest Neighbors (KNN). The algorithms were implemented for
testing using Matlab’s Statistics and Machine Learning Toolbox, and
the best one was incorporated into the Leap Motion system using the
Python library scikit5.

Support vector machine (SVM) is a powerful and popular
machine learning technique for multi-class classification. It first does
an implicit mapping of data into a higher dimensional feature space.
Secondly, it finds a linear separating hyperplane with the maximal
margin to separate data in this higher dimensional space. For a
training set

(xi, yi), i = 1,..., l
where
 xi ∈ Rn
and

yi ∈ 1,−1

and, l is the number of training examples. Then a test example x is
classified by:

4 https://www.mathworks.com/products/statistics/
5 http://scikit-learn.org/stable/

where αi are Lagrange multipliers of a dual optimization problem
that describe the separating hyperplane, K(·,·) is a kernel function,
and b is the threshold parameter of the hyperplane. The training
samples xi with αi > 0 are called support vectors, and SVM finds the
hyperplane that maximizes the distance between the support vectors
and the hyperplane. Given a non-linear mapping Φ that embeds the
input data into the high-dimensional space, kernels have the form of
K(xi,xj) = (Φ(xi) · Φ(xj)). SVM allows domain-specific selection of
the kernel function. Though new kernels are being proposed, the
most frequently used kernel functions are the linear, polynomial, and
Radial Basis Function (RBF) kernels. Since SVM only makes binary
decisions, the classification is fulfilled by only using the one-only
technique – to train classifiers to discriminate one expression from
other expressions [26].

There are advantages of using SVM to solve this problem. First, it
has a strong founding theory based on gradient descent and binary
decision-making. In our classifying problem, the yes or no decision-
making is all we need for each prediction. Second, global optimum is
guaranteed in SVM algorithm. Third, we do not need to worry about
choosing proper number of parameters for SVM model [3].

K-nearest neighbors (KNN) were chosen, as it is a fairly simple
classification algorithm that can be used for quick predictions. KNN
works by storing all available cases and will classify new cases based
on a similarity measure known as the distance function. A case is
compared to its k nearest neighbors, and is classified to be the
classification that is most common among its neighbors. We used
simple Euclidean distance

where d is the distance, x is the trained example, y is the test point,
and m is the number of features, in our case, m=285. The relationship
between the number of nearest neighbors, k, and the test/training
error (Figure 6) was investigated to determine the ideal k value [1].
We chose k=20 for a good balance between low test error and model
complexity.

Figure
6. Train and test error vs.

the number of nearest neighbors (k)

6.2 Overlapping Gesture Classifications
To classify overlapping gestures, we trained three classifiers
including multi-class Support Vector Machine (SVM), k-nearest
Neighbor (k-NN) in scikit-learn and neural network in Fast Artificial
Neural Network (FANN) Library. We did experiments to find out the
best classification model with the highest test accuracy.

For the SVM, we took “one-against-one” approach [18] for multi-
class classification. If n is the number of classes to be classified into,
then n*(n-1)/2 classifiers are built and each classifier discriminates
between two classes. We used the Radial Basis Function (RBF)
kernel: K(x,x′) = exp(−γ|x − x′|2), in which γ defines how much
influence a single training example has and is selected automatically.
For decision function, each classifier puts in a vote as to what the

45

correct answer is and the output returns the class with the most votes.
We used k-NN for supervised nearest neighbor classification. The

key hyper-parameter of k-NN is the predefined number k of training
examples closest in distance to the new point and the predicted label
is based on the majority votes of its k nearest neighbors. We did
experiment on how the choice of k would affect training and test
accuracy and found that k=8 generated the highest test accuracy, as
shown in Figure 7.

Figure 7. Train and test accuracy vs. the number of
the nearest neighbors k

Furthermore, we developed a neural network classification model.
Because the prediction of mudras needed to be in real-time, we used
Fast Artificial Neural Network (FANN) Library6. FANN is a free
open source neural network library, which implements multilayer
feed forward neural networks in C using back-propagation training.
FANN is very easy to use, versatile, and fast, making it a good choice
for real-time classification. We implemented the classification model
using FANN’s Python binding. We implemented the neural network
structure with 3 layers (input, hidden, and output) and 64 hidden
neurons. We set the hyper-parameters to connection rate = 1, learning
rate = 0.7, and we trained during 10000 epochs using sigmoid as the
activation function and RPROP as the training algorithm.

7. RESULTS
7.1 Movement Prediction for Hands Out-Of-Range
The classification models described Section 6.1.2 were implemented
in Matlab and tested using holdout cross validation. The training and
test accuracy are shown in Table 1 as an average of 10 different
holdout sets. Additionally, the average prediction time over 10
predictions (all in Matlab on the same computer) is shown for
comparison. KNN was chosen as the best prediction method as it
provided the best test accuracy of 30 ± 4%, where chance is 10%.
KNN is also sufficiently fast and performed in this case in under
1/60ms, the refresh time of the Leap Sensor. The test accuracy is low
for all methods, likely due in large part to the quality of the recorded
training data. The training examples were difficult to sort through and
many may have been inconsistent with typical trajectories. However,
the nature of this task is such that, if a trajectory prediction is
incorrect, the chosen trajectory is likely similar to the ideal case. This
will mean that the music generation will not be that far off from what
it should have been. Ultimately, any prediction is better than
dropping motion data.

6 http://leenissen.dk/fann/wp/

Table 1. Test accuracy of SVM, BDT and KNN models

7.2 Overlapping Gesture Classification
We implemented all three models mentioned in Section 6.2 and tried
to get the best accuracy on the test set, which is summarized in Table
2. Since the prediction time is also an important component to be
considered in real-time performance, we timed each model and the
result is summarized in Table 3. Our best k-NN model with k = 8
achieves the best result of 62% average test accuracy. The prediction
time of k-NN model is 3.90ms, which is short enough for real-time
performance. The k-NN predictor is sufficiently fast to achieve real-
time performance and is the most accurate so it seems to be the best
choice. The Neural Network likely performed poorly because our
date set only includes 435 examples, lower than most successful
typical Neural Network implementations.

We visualized the normalized confusion matrix of the best k-NN
model to examine its performance, as shown in Figure 8. The color
shading corresponds to the discrete of prediction, while the numbers
within the matrix correspond to the normalized prediction. From the
confusion matrix, we can see that some classes are harder to classify
than others. For example, the algorithm misclassified a large portion
of mudra 6 as mudra 1. This is pretty reasonable, as the relative
position of each finger is relatively similar in mudra 6 and mudra 1.
However, the diagonal of the confusion matrix is fairly high,
suggesting an acceptable correct prediction ratio.

 Table 2. Test accuracy of SVM, k-NN and NN models

Table 3. Prediction time of SVM, k-NN and NN models

Figure 8. Confusion matrix of the best k-NN model

8. DISCUSSION AND FUTURE WORK
We attempted to solve two problems that arise when a Leap
Motion™ sensor is used as part of a musical instrument. First, the
sensor cannot detect overlapping hand or finger motions, which were
important for musical applications. We implemented three different

 SVM NN k-NN
Predict time(ms) 5.48 0.03 3.90

46

algorithms to predict hand gestures while the hands were overlapped
and ended up choosing to use KNN as it gave an average test
accuracy of 62%. KNN is ideal for the predictions as it can provide
fast predictions needed for the real-time audio-visual generation.
 As future work, despite the fact that Leap Motion™ cannot detect
hands when they are overlapped, it still can record the raw images by
using infrared stereo cameras as tracking sensors. It is possible to
classify the mudra that is using these camera images as input. As the
input data are lower level and more complete, it can give a better
performance on classification. However, this approach will make the
problem even more complicated and run into another research topic
and expertise – Computer Vision.

Additionally, the sensor has a limited range, so the lost trajectory
data were predicted using a combination of k-means for clustering
and KNN for classification. The algorithm only predicted the correct
trajectory type 30% of the time, suggesting that there is room for
improvement. Future work would look in to more carefully recording
and processing the training data, as well as tweaking the classification
algorithm parameters. This is a major problem that can generally
affect every user of the sensor. For the specific ESM system, without
our system optimization solutions, gestural input data from Leap
Motion would be dropped when the sensor cannot detect the hand(s)
or fingers, thus interrupting the coherence and smoothness of the
real-time audio-visual output during the live performance or user
experience; with our system optimization solutions, the trajectory is
predicted. Instead of nothing, at least there are some data to be
processed, improving the coherence and wholeness of the
performance. In other words, even a made-up trajectory is better than
having the data completely drop out. Additionally, the music
generation algorithms could be chosen such that prediction mistakes
are not obvious.

We believe we can improve the training results by increasing our
training database, using extra slave sensors, and further observing
typical movements by the performer. This would open up the full
potential of a neural network approach.

Moreover, since our analysis provide methods to choose the good
features from the mudra movement, it seems likely that an interactive
machine learning approach like Wekinator’s could be applied for the
classification components of this problem. This could lead to a more
accurate and useful system than the current offline machine learning
approach. Specifically, an interactive approach would allow the
performer to identify types of gestures the system is misclassifying,
then immediately provide corrective training examples to help fix
these errors.

At the time of writing, Leap Motion has just newly built their next-
generation system Leap Motion Mobile7, designed to be mounted on
a VR headset, with a 180×180° field of view. This can already
partially solve the out-of-range problem at the hardware level. It is
reasonable to expect that we will achieve better results with the new
equipment. We look forward to running tests and experiments on the
Leap Motion Mobile in the near future and evaluating its
performance specifically in music applications and DMI design.

9. ACKNOWLEDGMENTS
Thanks to UCSB/CREATE, Curtis Roads, and Clarence Barlow as
well as Stanford/CCRMA and Chris Chafe for the facilities and
funding support. Thanks to the UCSB/MAT writing club. Thanks to
Julius Smith and Donghao Ren for their collaborations on realizing
the ESM project. Leap MotionTM is a trademark of Leap Motion Inc.

10. REFERENCES
[1] Alex Smola and S.V.N. Vishwanathan. ”Introduction to Machine

Learning.” Cambridge, UK. Cambridge University press. 2008.

7 http://blog.leapmotion.com/mobile-platform/

[2] Bongers, Bert. "An interview with Sensorband." Computer Music
Journal 22, no. 1 (1998): 13-24.

[3] Caruana, Rich, and Alexandru Niculescu-Mizil. ”An empirical
com- parison of supervised learning algorithms.” Proceedings of the
23rd international conference on Machine learning. ACM, 2006.

[4] D. Vasquez and T. Fraichard, Motion prediction for moving
objects: a statistical approach, Proc. IEEE International Conference
on Robotics and Automation, vol. 4, no. April, pp. 39313936, 2004.

[5] Fiebrink, Rebecca, Dan Trueman, and Perry R. Cook. "A Meta-
Instrument for Interactive, On-the-Fly Machine Learning." NIME.
2009.

[6] Giulio Marin. ”Hand Gesture Recognition with Leap Motion
andKinect Devices”. Univeristy of Padova. 2014.

[7] GREEN, Melinda. "The Buddhabrot Technique." Superliminal
Software(2012).

[8] Han, Jihyun, and N. E. Gold. "Lessons Learned in Exploring the
Leap Motion™ Sensor for Gesture-based Instrument Design."
Goldsmiths University of London, 2014.

[9] Hirschi, Gertrud. Mudras: Yoga in your hands. Weiser Books,
2016.

[10] Lakoff, George, and Mark Johnson. Philosophy in the flesh: The
embodied mind and its challenge to western thought. Basic books,
1999.

[11] Liorand Rokach and Oded Maimon. ”Data Mining and
KnowledgeDiscovery Handbook.” Boston, MA. Springer. 2010.

[12] Mahesh Pal. ”Multiclass Approaches for Support Vector Machine
Based Land Cover Classification.” arXiv preprint arXiv:0802.2411.
2008.

[13] Makiko Funasaka et. al.. ”Sign Language Recognition Using
LeapMotion Controller”. Int’l Conf. Par. and Dist. Proc. Tech. and
Appli.. 2015.0.51

[14] Mitchell, Thomas J., Sebastian Madgwick, and Imogen Heap.
"Musical interaction with hand posture and orientation: A toolbox
of gestural control mechanisms." (2012).

[15] Miyama, Chikashi. "Angry Sparrow." In NIME, p. 326. 2009.
[16] Oliveros, Pauline. Deep listening: a composer's sound practice.

IUniverse, 2005.
[17] Patrick. Choi. ”Learning and Predicting Moving Object Trajectory:

APiecewise Trajectory Segment Approach”.Robotics Institute,
CarnegieMellon University. 2006.

[18] Pierre Payeur. ”Trajectory Prediction for Moving Objects Using
Arti-ficial Neural Networks”. IEEE Transactions on Industrial
Electronics,VOl. 42, No. 2. 1995.

[19] Silva, Eduardo S., et al. "A preliminary evaluation of the leap
motion sensor as controller of new digital musical
instruments." Recife, Brasil (2013).

[20] Smith, Julius Orion, and Harrison Freeman Smith. "Closed Form
Fractional Integration and Differentiation via Real Exponentially
Spaced Pole-Zero Pairs." arXiv preprint arXiv:1606.06154 (2016).

[21] Sonami, Laetitia. "Lady’s glove." Online demonstration as part of
Paradiso (1997).

[22] Tormoen, Daniel, Florian Thalmann, and Guerino Mazzola. "The
Composing Hand: Musical Creation with Leap Motion and the
BigBang Rubette." NIME. 2014.

[23] Trupti Kodinariya and Prashant Makwana. ”Review on
determining number of Cluster in K-Means Clustering.”
International Journal of Advance Research in Computer Science
and Management Studies.Volume 1, Issue 6. 2013.

[24] Waisvisz, Michel. The hands: A set of remote midi-controllers. Ann
Arbor, MI: Michigan Publishing, University of Michigan Library,
1985.

[25] Wang, Ge. The chuck audio programming language. a strongly-
timed and on-the-fly environ/mentality. Princeton University, 2008.

[26] Zhao, Xiaoming, and Shiqing Zhang. ”Facial expression
recognition based on local binary patterns and kernel discriminant
isomap.” Sensors 11.10 (2011): 9573-9588

47

