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ABSTRACT
In this paper an emotionally justified approach for control-
ling sound with physiology is presented. Measurements of
listeners’ physiology, while they are listening to recorded
music of their own choosing, are used to create a regression
model that predicts features extracted from music with the
help of the listeners’ physiological response patterns. This
information can be used as a control signal to drive musi-
cal composition and synthesis of new sounds – an approach
involving concatenative sound synthesis is suggested. An
evaluation study was conducted to test the feasibility of the
model. A multiple linear regression model and an artificial
neural network model were evaluated against a constant re-
gressor, or dummy model. The dummy model outperformed
the other models in prediction accuracy, but the artificial
neural network model achieved significant correlations be-
tween predictions and target values for many acoustic fea-
tures.
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1. INTRODUCTION
The goal of this study is to explore the link between music
and emotion through the effect that music has on the body
of the listener, and to use that as a basis for a justifiable rep-
resentation of emotions through sound. By creating a sta-
tistical model between the listeners physiological responses
and the features of the sound, reconstruction of new sounds
can be achieved directly, without the need of explicitly as-
signing emotional meaning to sound features. Earlier at-
tempts to generate emotionally relevant music with physio-
logical measurements have used a somewhat arbitrary map-
ping between the biosignals and the generative composition
[6, 10]. Other approaches for music generation from biosig-
nals, such as BioMuse [26], have treated the biosignals as
control data for synthesis.

In this study, a regression model to predict acoustically
analyzable musical information of songs from measurements
of the listeners physiology during listening, on a second-by-
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second basis, is created and evaluated in a small experi-
mental study. The current system works offline, but special
attention has been given to using tools and methods that
make real-time processing possible.

The generation of new sounds is achieved by using corpus-
based concatenative sound synthesis, which is a method for
matching a certain sequence of small sound units to create a
new sound [25]. In concatenative sound synthesis, the cor-
pus is a database of sound units that includes the descrip-
tors for each unit. The descriptors can be extracted from
the source signal, or external descriptors can be attributed
to the sounds. The selection for the synthesised sequence
of units is made by composing with the descriptors. The
unit selection algorithm is used to find the best match ac-
cording to certain criteria, such as distance and continuity.
Using the regression output of this study as a composition
source for driving the unit selection algorithm, with a cor-
pus of sounds analysed for the same musical information,
new sounds can be reconstructed as a representation of the
users physiology. The resulting sound is a recreation of the
physiological state of the subject, based on how sound has
affected the subject before.

In a musical context this creates an elegant feedback loop
– essentially the sound generated by the system expresses
the users physiological state, which in turn is affected by
the sound properties. Assuming that the model is imper-
fect and that factors external to the music can influence the
user, the non-stationary sound generated by this system is
an extension of the subjects involuntary expression as well
as a self-reinforcing loop that could have interesting prop-
erties for example for music therapy. The reconstruction
of sound and music can be approached in various ways in
the future by using different kinds of data to create the re-
gression model with physiology. For example higher level
data, such as chords, harmonies and lyrics could be used,
as well as synthesis parameters of a specific synthesiser or
a sound-generating system.

2. BACKGROUND
William James argued in an essay from 1884 that emotions
are separate from cognitive processes, and that the body
acts as a mediator between the cognitive and emotional
systems [11]. This theory was disputed, and the origins
of emotions have been a hot topic in affective science ever
since [4, 22, 17]. In any case, an idea first proposed by
James, that emotions exist in the human physiology as dis-
tinguishable patterns, has garnered substantial evidence [1,
9, 18]. Music is considered to be capable of influencing the
listener’s emotions [19, 12]. Because music influences emo-
tions, and emotions are recognisable from physiology, the
assumption that a link exists between the content of music
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and the physiological responses of the listener is justifiable.
The range and causes of musical emotions are still under

debate, and musical emotions have been described both in
dimensional and categorical ways [23, 24, 27]. The field of
music emotion recognition is concerned with the automatic
detection of emotional content in music. A common way to
approach this problem is to predict the emotion perceived
and reported by the listener based on the content of a song
or segment of a song. Studies have been able to predict
emotional ratings of music from acoustic descriptors with
regression models [24, 7]. Other studies have successfully
predicted emotional content reported by the listener based
on physiological measurements during the listening [13, 21].

3. RECREATING MUSIC WITH THE BODY
The purpose of the model explained in this section is to re-
construct sounds in a perceptually and emotionally mean-
ingful way. The approach suggested here involves creating
a regression model between musical content and physiology,
so that new musical content can be predicted on the basis
of learned relationships between music and the users phys-
iology (Figure 1). The prediction result can then be used
further to create a musical display of the psychophysiologi-
cal state of the user.

a)

Model
learning

b)
Model
prediction

Figure 1: The regression model functions in two
phases. a) The model learns the relationships be-
tween the listeners physiology and the musical in-
formation. b) The model reconstructs musical in-
formation based on the users physiology.

To approach the task of modelling the relationship be-
tween music and a listener’s physiological responses, find-
ing solutions for the analysis of audio and physiological data
was necessary. The system was developed with the goal that
all the components can be run in real time. At this point,
the analysis itself was done offline, but the analysis meth-
ods afford for creating a fully online system. This required
certain qualities from the signal processing algorithms, es-
pecially the ability to analyse subsequent chunks of data as
they are measured, instead of the whole data set at once.
Physiological variables have typically a several-second lag
from the stimulus, and certain physiological components
need a longer time window to be analysable [24, 14]. A
compromise was made to analyse all the data with a sliding
10-second time window with a 1-second hop between subse-
quent data points, and 0, 1, 2, 3 and 4 second lags for the
physiological variables. Continuous control data can still
be created by interpolating between the regression result of
subsequent seconds.

3.1 Real-time analysis of physiological data
The physiological measurements that were used in this study
are electrocardiogram (ECG), electrodermal activation (EDA)

and respiration inductance plethysmography (RIP). ECG
measures the electrical activity of the heart muscle, mak-
ing accurate heart beat detection possible. EDA, or skin
conductance measures the activity of the sweat glands on
the palm, representing sympathetic nervous system activity
and the ”fight-or-flight” response. RIP is measured with a
band across the chest to quantify the subject’s breathing.

An open source tool for the real-time analysis of physio-
logical data could not be identified, so a decision was made
to begin the development of a new software tool1 for this
purpose, using verified analysis algorithms found in litera-
ture [5, 2]. This tool is based on a modular structure, where
the data stream from the data gathering device driver is
buffered and piped to different analysis modules. The re-
sult is either stored to disk, visualised or sent to another
application as Open Sound Control (OSC) messages (Fig-
ure 2).

Device driver

Recording module

Bu!er

Data stream

Main application

Analyzed data

Raw data

Analysis module

Data analysis

Analysis module

Data analysis

...
Analysis module

Data analysis

OSC message

Figure 2: The software tool for real-time analysis of
physiological data has a modular architecture.

In this study, a total of ten different variables were ex-
tracted from the physiological signals. From the EDA sig-
nal, the electrodermal level (EDL), the amplitude and the
rise-time of the electrodermal response (EDR) were anal-
ysed. From the ECG signal, heart rate, the square root
of the mean squared differences (RMSSD) of the heart-rate
variability (HRV) time series, and the standard deviation of
the HRV time series were calculated. The RIP signal was
analysed for respiration rate and inhale and exhale dura-
tions.

3.2 Music information retrieval
The automatic analysis of music information retrieval (MIR)
features was approached with an existing tool, MIRToolbox
developed by Olivier Lartillot [16]. The current version of
MIRToolbox does not support real-time analysis, but the
variables chosen for this study are all analysable in a real-
time setting as well. Other tools can be used in the future
for real-time MIR analysis, such as Libxtract [3]. MIRTool-
box was chosen at this point, as it runs in Matlab (The
MathWorks Inc., Natick, MA), which was used also for re-
gression modelling.

Eight variables were extracted from the audio signal. In
MIRToolbox, root mean square (RMS) is calculated directly
from the signal envelope. Fluctuation strength is calculated
from the Mel-scale spectrum. Key strength and mode are
estimated from the chromagram. Both the Mel-scale spec-
trum and chromagram are calculated from the frequency
data which is derived from the fast Fourier transform (FFT).

1https://github.com/vatte/rt-bio
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The FFT and signal envelope are used to calculate the spec-
tral centroid. Tempo and pulse clarity are estimated in a
complex way using a filterbank, onset detection and auto
correlation. Structural novelty is assessed with a method
that operates without the need of future events for deter-
mining the novelty value at a given time. [16, 15]

3.3 Regression model
The prediction of a MIR descriptor with the help of several
physiological variables can be described as a many-to-one
mapping problem. Because the underlying relationships in
the data are for a large part unknown, it was decided that
two very different models would be evaluated and compared.

Multiple linear regression (MLR) is a simple algorithm
for regression with many input variables [20]. It solves a
linear polynomial equation by minimising a loss function,
such as the mean squared error. δ-values for the physiolog-
ical variables were used with the MLR model, representing
the change between the current time window and the pre-
ceding time window of the same length. δ-values for the
MIR descriptors were evaluated as targets for both models.

MLR was chosen as a baseline model, to be compared
with a more complex model, in this case a non-linear au-
toregressive exogenous (NARX) neural network model [8].
This type of model is especially suited for the prediction of
longitudinal data, as it includes an autoregressive compo-
nent. Both models were compared against a dummy model,
a constant linear regressor created from the learning data.

4. EVALUATION STUDY
A small evaluation study was conducted to test the sys-
tem and the feasibility of the regression model. Six test
subjects participated in the experiment. Each participant
brought four songs to the experiment with the instruction:
”Choose four songs that you would like to listen to right
now”. Physiological data was recorded in a closed test room,
where the test subject was sitting alone. The subject could
choose to have the lights on or off, and whether they wanted
to listen through loudspeakers or headphones. Physiolog-
ical data was measured with the Nexus-10 MkII wireless

bluetooth amplifier (MindMedia BV, Herten, Netherlands).
Four songs chosen by another subject were added to the
stack of stimuli, for a total of eight songs per subject. The
justification for this was that when more data has been gath-
ered, group wise comparisons of the effect on model per-
formance of familiar versus unfamiliar songs can be made.
Between the playback of each song, 2 minutes of silence
was inserted, as well as in the beginning and the end of the
measurement. The order of the songs was randomised.
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a)
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b)
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Prediction
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seconds
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Figure 3: Prediction results for the NARX model.
a) Pulse clarity, subject 3 (song: Miguel - Adorn,
R2: 0.17, p-value:1.5 · 10−09). b) RMS, subject 7
(song: Placebo - Without You I’m Nothing, R2:
0.26, p-value: 2.2 · 10−16).

The regression models were trained and tested individu-
ally for each subject. Feature selection was performed for
the MLR model, with a forward selection paradigm. Both
the MLR and the NARX models were trained with a ”leave-
one-song-out” cross-validated paradigm, to avoid bias from
using the same song in both training and testing. All the
songs were truncated according to the length of the shortest
song in the data set, so that each song would have an equal
effect on the model.

Table 1: Comparison of constant (const), multiple linear regression) MLR and NARX artificial neural
network (ANN) models. The values that represents best performance in the different model evaluation
tests are underlined for each MIR target. The MIR targets are divided into absolute values and δ-values,
which represent the change in subsequent time windows. The model evaluation parameters are mean square
error (MSE), coefficient of determination (R2) and the probability that there is no correlation between the
prediction and the target value (p-value). Statistical significance (p-value < 0.05) is marked with a *.

MIR feature MSE const MSE MLR MSE ANN R2 MLR R2ANN p-value
MLR

p-value
ANN

RMS 2.50 · 10−5 2.61 · 10−5 3.60 · 10−5 0.0195 0.0293 0.051 0.010*

Fluctuation 1.98 · 104 1.98 · 104 3.83 · 104 0.0138 0.0917 0.079 0.000*
Tempo 175 191 440 0.0009 0.0399 0.677 0.003*

Pulse clarity 4.53 · 10−3 7.09 · 10−3 3.47 · 10−2 0.0164 0.1663 0.074 0.000*

Spectral centroid 1.54 · 103 3.32 · 103 1.626 · 103 0.0471 0.1010 0.002* 0.000*

Key strength 8.87 · 10−9 8.99 · 10−9 4.23 · 10−8 0.0014 0.0090 0.606 0.156

Mode 4.25 · 10−4 4.51 · 10−4 8.93 · 10−3 0.0118 0.0191 0.188 0.052
Novelty 0.850 0.985 1.82 0.0166 0.0180 0.054 0.104

δRMS 3.07 · 10−6 3.10 · 10−6 8.40 · 10−5 0.0147 0.0068 0.070 0.318

δFluctuation 5.79 · 103 5.19 · 103 7.05 · 103 0.0455 0.0071 0.001* 0.219
δTempo 87.5 87.7 984 0.0048 0.0076 0.401 0.203

δPulse clarity 2.01 · 10−3 3.07 · 10−3 3.29 · 10−2 0.0034 0.0178 0.483 0.046*

δSpectral centroid 3.79 · 102 7.21 · 102 2.15 · 103 0.0430 0.0120 0.011* 0.184

δKey strength 1.94 · 10−8 1.95 · 10−8 7.02 · 10−8 0.0004 0.0028 0.753 0.430

δMode 4.24 · 10−4 − 2.34 · 10−2 − 0.0544 − 0.000*
δNovelty 0.520 0.647 3.63 0.0028 0.0229 0.438 0.023*
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Median values for the mean squared prediction error and
the p-value for a pairwise correlation test were used to eval-
uate the performance of the models. The evaluation results
were mixed, as can be seen in Table 1. The dummy model
outperformed both models in prediction accuracy, but the
NARX model achieved significant correlations (p < 0.05) for
fluctuation, tempo, pulse clarity, spectral centroid, δ-pulse
clarity, δ-mode and δ-novelty. The MLR model achieved
significant correlations for spectral centroid, δ-fluctuation
and δ-spectral centroid. Examples of the NARX models
prediction can be seen in Figure 3.

5. CONCLUSIONS
A new approach for mapping physiological signals to acous-
tical variables has been presented in this paper. A regression
model that learns in a music listening situation and pre-
dicts acoustical variables from physiological responses was
constructed and evaluated. Currently, acoustical variables
can be predicted with the regression model. The results of
the evaluation study were promising, especially the neural
network model achieved significant correlations for many of
the acoustical variables. This can be seen as an indicator
that non-linear models with autocorrelating capabilities are
feasible for future development. To further assess the per-
formance and feasibility of the regression model, a larger
dataset needs to be collected.

Currently, individual models for each subject were cre-
ated. In the future, the performance of individual models
can be evaluated against an inter-subject-model. Also the
effect of familiarity to the music listened to can be explored.
Regarding the sound generating strategy, a user study can
be made to collect the users’ own impressions of the rele-
vance of the generated sound to their emotions. Will the
sounds and music created through regression be identifiable
to the user as an auditory display of their emotions?
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