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ABSTRACT 

Mapping gestures to digital musical instrument parameters is 

not trivial when the dimensionality of the sensor-captured data 

is high and the model relating the gesture to sensor data is 

unknown. In these cases, a front-end processing system for 

extracting gestural information embedded in the sensor data is 

essential. In this paper we propose an unsupervised offline 

method that learns how to reduce and map the gestural data to a 

generic instrument parameter control space. We make an 

unconventional use of the Self-Organizing Maps to obtain only 

a geometrical transformation of the gestural data, while 

dimensionality reduction is handled separately. We introduce a 

novel training procedure to overcome two main Self-

Organizing Maps limitations which otherwise corrupt the 

interface usability. As evaluation, we apply this method to our 

existing Voice-Controlled Interface for musical instruments, 

obtaining sensible usability improvements. 
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1. INTRODUCTION 
In Digital Musical Instruments (DMI) design, the Gestural 

Controller (GC) [1] plays an essential role: it converts the input 

gestural data into intermediate signals that are mapped to sound 

synthesis or processing parameters. The GC, together with the 

mapping, defines the relationship between the performer’s 

gesture and DMI sonic response. Its design is considered a 

specialized branch of HCI where the simultaneous and 

continuous control of multiple parameters, the instantaneous 

response, and the necessity of user practice are key aspects [2] 

[3]. The algorithm to interpret the gestural data, performed by 

the GC, depends on the nature of the sensors employed in the 

interface and also on designer choices. Hunt, Wanderley, and 

Kirk [4] classify systems for gestural acquisition into three 

categories: direct, indirect and physiological. For the first 

category, each sensor captures a single feature. Correlations, 

dependencies, redundancy and constraints across the different 

sensor data can be derived and handled directly by the physical 

characteristic of the performer and the sensors. Hence knowing 

how the performer’s gesture is represented in the gestural data 

domain allows the implementation of explicit strategies within 

the GC. For the other two categories, finding the relationship 

between a gesture and the captured gestural data may be 

challenging, therefore generative mechanisms, such as learning 

algorithms, are often used for the model estimation [5]. 

In this paper we propose a method to obtain a GC through 

unsupervised learning on a set of gesture examples. We assume 

that the gestural data is high dimensional, continuous, and 

contains potential correlations, cross-dependencies, and it is not 

uniformly distributed. The GC we propose here has output 

dimensionality generally lower than the input, its output signals 

are continuous and have no cross-constraints across the 

individual dimensions. Considering the gestural examples 

provided as a sequence of instantaneous postures snapshots, the 

GC relates its unique outputs combinations to unique postures. 

A performer gesture would therefore produce a continuous 

modification of the DMI parameters, changing the properties of 

the sound synthesis or processing algorithm. The non-linear 

transformation performed in the GC outputs also if the input 

gesture differs from the provided examples, but respecting the 

lower dimensional spatial bounds, topology, and distribution 

found in the example data set. 

This method is particularly suited for “alternate controllers” 

[4] with indirect and physiological gestural data acquisition, 

such as those with a large set of features extracted from an 

audio or video signal, or from a network of sensors, but it can 

be applied to high dimensional direct acquisition as well where 

the implementation of explicit strategies can be challenging. 

From a broad range of potential application scenarios, in this 

paper we present and discuss the integration of this GC 

technique with our Voice-Controlled Interface (VCI) [6]. The 

VCI is an alternate controller for DMIs with gestural 

acquisition lying between the categories of indirect and 

physiological which estimates pseudo-physiological 

characteristics of the vocal tract through the analysis of the 

vocal audio signal. The VCI is meant to provide performers 

with vocal control over a multidimensional instrument real-

valued parameters space. Therefore the GC we present in this 

work does not perform temporal gesture recognition, but it 

samples instantaneous postures from a gesture and maps these 

in an intermediate space with a bijective correspondence with 

DMI parameters. The key aspect of this work is the utilization 

of a multidimensional extension of the Kohonen Self-

Organizing Maps (SOM) [7] lattice to achieve a geometrical 

transformation of the gestural data space into the mapping 

space. We perform the gestural data dimensionality reduction 

using non-linear techniques before the SOM training to 

overcome some limitations and shortcoming of the SOM 

lattice, which are evident when using the transformation 

mentioned above for GCs. Moreover, we introduce and 
motivate some variation in the SOM training algorithm as well.  
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2. RELATED WORK 
Artificial Neural Networks (ANN) have been used in the design 

of new interfaces for musical purposes for more than two 

decades. From the pioneering work of Lee and Wessel [8] to 

Fiebrink’s more recent Wekinator [9], history shows how these 

generative algorithms have been successfully used to learn 

gesture maps for DMIs, particularly for time-continuous real-

valued parameters. Typically an ANN is trained with 

supervised techniques. On the other hand, the Kohonen SOM 

ANN is trained with an unsupervised technique. SOMs are 

commonly used to produce a two-dimensional discrete 

representation, called a map or lattice, of the input space. 

SOMs, contrary to traditional ANNs, tend to preserve the 

topological properties of the input space. Therefore, SOMs 

have been mainly used for classification, visualization, 

organization or retrieval of audio, exploiting the dimensionality 

reduction and topological organization capabilities. Ness and 

Tzanetakis [10] present a comprehensive survey of SOM 

applications in music and instrument interface related projects. 

Some instrument interfaces using SOMs are limited to a one-to-

one linear mapping of a two or three-dimensional sensor to an 

equal dimensional trained map. Then the music or audio chunks 

previously used to train the map are retrieved and reproduced in 

real time, as in Odowichuk [10], which represents one of the 

few musical examples using an SOM output lattice with 

dimensionality larger than two. 

Stowell [11] describes an attempt to use the SOM for 

remapping vocal timbre representing the gestural data to sound 

synthesis. He explains the relatively poor performance of this 

solution with the intrinsic shortcomings and limitations of the 

SOM. The selection of appropriate training settings, output 

lattice resolution, and dimensionality may vary drastically case 

by case. There may also be differences in map orientation for 

different training over the same data set, and errors in topology 

preservation such as output lattice twisting or folding. The 

latter two are harmless side effect in classification tasks but are 

lethal when the output lattice must represent a continuous and 

non-linear discretization of the input data set, as we wish to 

obtain here. The SOM performs a dimensionality reduction of 

the input data and at the same time it tries to maintain its 

topology. As described in [12], this dualistic role of the SOM is 

one of the sources of topology corruption. If the embedded 

dimensionality of the input data is higher than the output lattice 

dimensionality, topology corruption is highly probable. 

Moreover there is a tradeoff between continuity and resolution 

of the map. The SOM output, represented by the lattice node 

position, is intrinsically discrete. Therefore when we mention 

map continuity within this context we mean that vectors very 

close in the input manifold are mapped either to the same or 

adjacent nodes. These issues, their effect on a SOM-based GC, 
and proposed solutions are covered in the next section. 

3. SELF-ORGANIZING GESTURES 
In this section we describe the procedure to train the SOM-

based GC and different operative modalities which may fit 

different DMI interface requirements. As mentioned above, our 

goal is to drive time-continuous and real-valued DMI 

parameters. The set of gestures used for the training represents 

a temporal sequence of instantaneous postures, defining an 

arbitrary shape in an N-dimensional space with arbitrary and 

generally non-uniform density. On the output side, the GC 

generates data in an M-dimensional space, therefore it applies a 

bijective transformation f : R
n
 → R

m
. It is desirable that the 

transformation f maintains the local and global topological 

structure of the training gestures and spreads them evenly over 

the output dimensions. The training data subject to the 

transformation f must uniformly fill in a hypercube with 

dimensionality M. An empty or low-density sub-volume in the 

output hypercube results in a GC constraint that makes it 

impossible to obtain certain combinations of the M output 

parameters with any gesture similar to the training ones. 

Independently of the strategy used to map the GC output to the 

DMI (one-to-one, divergent or convergent), the transformation f 

described above implicitly requires that M is equal to or smaller 

than N. In high-dimensional gestural acquisition we often find 

an embedded dimensionality N’ smaller than N, therefore if we 

want non-redundant GC outputs, M has to be equal or smaller 

than N’. 

In principle, the SOM seems to be a suitable solution in 

learning the transformation f from the gestural examples. The 

GC can be implemented interpolating the discrete output map 

of the trained ANN, which has N input neurons and an M 

dimensional output lattice. However, due to the shortcomings 

in topology preservations described in the previous section, the 

GC can be affected by the following problems detrimental to 
musical instrument design: 

• inverted GC response to the gestural input 

belonging to different subsections of the input 

space due to SOM lattice twisting; 

• discontinuous GC response due to excessive SOM 

folding, (resulting in the proximity of two or more 

edges in the output lattice), or due to SOM curled 

edges; 

• minor inconsistency of the GC behavior due to 

local topology distortion of individual output nodes 
relative to its neighbors.  

Our approach aims to avoid or minimize topology corruptions 

by introducing a prior dimensionality reduction step, proper 

data preprocessing, and some expedients in the training 

algorithm. We free the SOM from the dimensionality reduction 

task, while using it to find a non-linear geometrical 

transformation between the two iso-dimensional spaces, and to 

compresses/expands the dynamic of the input. A similar 

approach for a different application domain is taken in the 

Isometric SOM [13], where a 3D hand posture estimation, is 

achieved using the SOM with a prior dimensionality reduction 
stage performed using the ISOMAP method. 

3.1 Learning Process 
The preparation of a proper training data set G is essential for 

the success of the learning algorithm. The larger the data set, 

the better the final system will likely respond. However, 

consistency and compliance of the data set are fundamental. 

Most sensor output data are sampled at regular intervals. 

Maintaining a posture over time during the recording of G 

generates inappropriate high-density cluster in the N-

dimensional space, due to the sampling of identical or very 

similar postures. This can bias and corrupt our training process 

because the data density is not representative of the gesture 

only. Strategies to avoid the presence of identical postural data 

may vary with the characteristics of the gestural data 

acquisition system, or alternatively, a more general step of post 

processing over the acquired data G can be used. For our VCI 

we adopt a gate operated by the spectral flux value to filter out 

undesired postures while collecting the gestural data vectors in 

G. The spectral flux threshold value is automatically measured 
from a set of postures, used as well for noisy features rejection. 

3.1.1 Gestural Data Pre Processing 
A single dimension here represents a sensor signal for direct 

gestural acquisition, or a single feature for indirect and 

physiological gestural acquisition. The N-dimensional gestural 

training data G is centered at the origin removing the mean 



gmean. Then we estimate N’, the embedded dimensionality in the 

N-dimensional gestural training data. This step is essential 

because after the dimensionality reduction we keep at most N’ 

dimensions, possibly fewer depending on user choice. For this 

estimation we round the results of the correlation dimension 

method [15] to the closest integer. For the dimensionality 

reduction there are several possibilities and experiments (e.g. 

[16]) that demonstrate a specific technique outperforms others 

only if certain specific characteristics are present in the data, 

while for real data scenarios often the most advanced 

techniques gives just a small improvement over basic 

techniques such as the Principal Component Analysis. Since we 

cannot make any assumption about the gestural data, choosing 

a Nonlinear Dimensionality Reduction (NLDR) technique 

would handle complex cases and non-linear manifolds. We 

chose a convex NLDR technique because it produced 

consistent results over different experimental iterations. We 

tested several NLDR techniques on real gestural data sets, and 

those that produced the best results were ISOMAP [17] 

followed by LLE [18]. The results were measured in terms of 

uniformity of data distribution across single dimensions, as well 

as the overall GC user experience. However, the tests were 

performed integrating the Self Organizing Gestures method 

with our VCI covered in the next section. It is certainly possible 

that for different gestural data acquisition systems the optimal 

NLDR might differ from those used here. After the NLDR, the 
data on each dimension are normalized to the range [-1;1]. 

3.1.2 SOM Training 
As mentioned above, the SOM output lattice dimensionality M 

will be at most equal to N’. However the output dimensionality 

of the GC M is user-configurable. The NLDR technique ranks 

the output dimensions, hence we simply discard the lowest 

ranked (N’- M) components to achieve the further reduction. 

An excessive number of output nodes, often referred to as 

output lattice resolution, is one of the causes for topology 

distortion, especially of the local type. We derive the resolution 

r from M and from the number of entries g in the gestural 

training data G using a nonlinear relation as in (1). A high-

resolution implies a more complex model to be estimated, and 

the requirement of more training data is a direct consequence. 

Similarly, the number of SOM training iterations tMAX is related 

to the model complexity as in (2). 

 r = round(1.5 ⋅ log
M
(g))  (1) 

 tMAX =M ⋅ g ⋅ r  (2) 

The SOM output lattice represents an M-dimensional 

hypercube with r
M

 output nodes Oj distributed uniformly 

(forming a grid), each associated to an M-dimensional weight 

vector wj. Before initializing the weight vector wj and training 

the SOM, we search the gestural training data for 2
M

 points ak 

representing the extrema of the performer’s gestures that best 

encompass the gestural space. The data is centered on the axis 
origin, hence we perform the search with the following steps: 

1. for each quadrant, set an equal-value boundary on 

each axis, and increase it progressively reducing the 

quadrant extension until only one point remains, and 

compute the sum of the distances of the 2
M

 ak points 

from the origin and between themselves; 

2. repeat the previous step performing a sequence of 

fine angular full data rotation steps around the origin; 

3. pick the rotation angle αopt and the related ak that 
maximizes the sum of the distances. 

The weights wj are initialized distributing them uniformly 

through the hypercube inscribed into the dataset, while the 

weights related to the Oj located at the 2
M

 vertices are 

initialized at the position of the ak. The SOM is trained for tMAX 

iterations picking a random point xrand from the dataset and 
updating all the wj, as in equations (3) and (4)  

 w
j
(t +1) =w

j
(t)+µ(t) ⋅Θ(t, j, z) ⋅ (xrand −w j (t))  (3) 

 Θ(t, j, z) = exp −Oz −O j

2

2 ⋅σ (t)2( )  (4) 

where µ(t) is the linearly decreasing learning rate, Θ(t,j,z) is the 

neighborhood function described in (4), z is the index of the 

output node Oz with the related weight closest to xrand. In (4) 

the nominator of the exponential is the squared Euclidean 

distance of the output nodes in the output M-dimensional grid, 

σ(t) is the linearly decreasing neighborhood parameter 

representing the attraction between the output nodes. We apply 
the following modification to the standard training algorithm: 

• the Oj of the 2
M

 vertices are updated more slowly 

than the rest of the points, using the half of the 

learning rate µ(t); 

• the random point selection is biased in favor of the ak, 

forcing the weights update using the 2
M

 ak every time 

a 10% of tMAX has elapsed, and using half of the 

attraction σ(t) for the Oj of the 2
M

 vertices. 

At the end of the training process each output node Oj is 

associated with a number Cj counting how many entries in the 

training gestural data are associated with it (for which it is the 

“nearest node”). Additionally we embed information about the 

temporal unfolding of G in the lattice output nodes. This is 

used in one of the operative modes described in the next 

subsection. Since we are running a large number of training 

iterations, we choose a relatively small value for the initial 

learning rate µ(t0). To avoid local topology distortions, we set 

the final value of the attraction σ(tMAX) to a relatively large 

value, and a µ(tMAX) at least one order of magnitude smaller 

than the initial one. In particular, values producing good results 

for our vocal gestural data cases are: µ=[0.5,0.01] and 

σ=[1.5,0.5]. Other gestural data acquisition systems may 

require different parameter values to obtain a well-trained 

system, but the selection strategy is still valid. 

The idea behind the modification of the conventional training 

is to avoid the topology distortions mentioned above, and at the 

same time obtain a better overlap between the weights of the 

SOM output nodes and the gestural data. In particular, we 

focused in pulling the lattice from its vertices, stretching it 

toward the gestural extrema, achieving at the same time lattice 

edges enclosing the M-dimensional gestural data subspace with 

higher fidelity. Moreover, the SOM training data is also used to 

find the M-dimensional convex hull that encloses all the vectors 

in G. The convex hull defines the valid region for new 

incoming vectors during the real-time operation, so that the GC 

does not produce an output if the vector is outside the region. In 

Figure 1 we present two examples of SOM training on gestural 

data, with M=2 and M=3, showing the training data (after 

preprocessing), the weights of the SOM nodes at initialization 

and after training, node mass Cj and node neighborhood based 

on gestural data temporal unfolding. The weights of the SOM 

nodes are represented in the normalized M-dimensional training 

data space. 

The preprocessing and training processes presented are 

completely unsupervised. In case the user wants to explicitly 

define the 2
M

 gestural extrema to be associated with the SOM 

lattice vertices, we use a supervised dimensionality reduction 

technique in the preprocessing stage. This requires an 

additional training data set E that contains several instances of 

labeled gestural extrema. We use a multiclass Linear 

Discriminant Analysis (LDA) for the N to M dimensionality 

reduction, which maximizes the between-class variance while 



minimizing the within-class variance. The LDA transformation 

is learned from the labeled data in E, and it replaces ISOMAP. 

The LDA dimensionality reduction is then applied to G and to 

the 2
M

 class centroids in E, representing the gestural extrema. 

The rest of the preprocessing and SOM training procedure is 

unchanged. With LDA, when projecting the gestural data in to 

the lower dimensional space, the extrema are located 

somewhere along the boundaries of the enclosing convex hull, 

insuring SOM topological preservation when associating the 
extrema with the vertices of the output lattice. 

3.2 GC Operational Modes 
The SOM-based GC is implemented applying the bijective 

transformation f, composed by a series of step in which we 

apply the processing learned from G. For a new gestural data 
vector d, we obtain the output vector p as follows: 

1. subtract the mean gmean from d; 

2. apply the NDLR and truncate the vector to the top M 

dimensions if M is smaller than N’; 

3. normalize each dimension to the range [-1;1]; 

4. rotate the vector by the angle αopt; 

5. verify if the vector is within the valid convex hull; 

6. find the closest wj to the obtained d
*
 and output the 

related Oj normalized grid indexes vector p. 

In Figure 2 we summarize the learning process and the GC 

processing steps. The operations in the square boxes within the 

learning process, learn and apply a transformation from G. 

Those in the rounded boxes within the GC simply apply the 

transformation based on the information learned. 

The GC output p contains the indexes of the output node, 

which is its position in the M-dimensional lattice. Usually the 

indexes are integers numbers, but we normalize them in the 

range [0,1]. The resolution r in (1) directly defines the 

resolution of the M dimensions of p, which are based upon a 

user defined mapping strategy and used to drive DMI 

parameters. If r is small, we use the Inverse Distance 

Weighting (IDW) interpolation between the 2
M

 closest wj to 

provide virtually infinite output resolution. The SOM output 

lattice can be used in more complex manners to implement 

variations of the GC which may suit different instrument 

interface philosophies. 

To obtain a more smooth response d-to-p, it is possible to 

force the output to follow a connecting path on the lattice 

Moore neighborhood. The search for the wj closest to d
*
(t) is 

performed only on the 3
M

 neighbors of the d
*
(t-1) closest Oj, 

including itself. If d(t-1) and d(t) are far apart due to a quick 

performer gesture, the GC responds more slowly. This can also 

help to compensate for potential performer error in actuating 

the interface, or noise in the gestural acquisition system. If 

d(t+1) is again close to d(t-1), such big variations in the 

gestural data space will produce only a small perturbation in the 

related temporal sequence of p. 

 

 

 

Figure 1. 2D and 3D lattice examples of an SOM trained with the proposed algorithm with different gestural data; a) gestural 

training data; b) weight initialization; c) trained lattice output weights; d) trained lattice output weights with mass mapped to 

node diameter; e) trained lattice with output node neighborhood based on gestural data temporal unfolding. 

 

 

 

Figure 2. Learning Process and Gestural Controller functional schemes. 



 

The SOM algorithm is supposed to organize the output node 

weights also according to the training data density. More dense 

areas will have more output nodes and vice versa, which ideally 

means equal Cj across all the output nodes. However in real 

cases some minor difference may still be present. We can 

consider the Cj as a mass value associated with Oj and replace 

the Euclidean distance with a “gravity force” in the 
neighborhood search as in (5) 

 Fj = Gconst ⋅C j w
i
−d

*
2

( )  (5) 

where Gconst represents a user-defined gravitational constant, 

and we can omit the mass of d
*
 because it will just scale 

equally across all the Fj. With this approach, independently of 

the neighborhood search space definition, the winner Oj is the 

one giving the strongest gravitational attraction. The GC 

response perturbed by the mass of the output nodes is non-

linear, presenting “hills” and “valleys” where a different 

amount of gestural energy is required to change position. 

So far, we have used the SOM-based GC using the global 

gestural information learned from G. Therefore the system will 

also respond to gestures different from those used for training, 

but in terms of their multidimensional shape and density in G. 

At the end of the learning process we found the set of possible 

next nodes for each of the lattice output nodes, analyzing 

forward and backward the sequence of entries in G. We can use 

the possible next nodes associated to each Oj as a neighborhood 

search subspace. In this way, we obtain a different operational 

modality where the GC responds only to gestures consistent 

with those used in training. This modality introduces strong 

constraints between the GC input and output, and it is not used 
in our VCI system. 

4. VCI INTEGRATION & EVALUATION 
In this section we discuss the Self-Organizing Gestures user 

perspective. We briefly describe the integration with our VCI 

system, and we present some numerical results. The proposed 

method is completely unsupervised and allows the user to 

obtain the GC transformation f by providing only some gestural 

examples. Because the method is unsupervised, the implication 

is that users have to learn the resulting gestural organization in 

relation to the GC output. We provide two computationally 

inexpensive possibilities for allowing the user to modify the 

system response in real-time. The first is the range [0,1] 

inversion for every single GC output to [1,0] and the second is 

the application of a global scaling value to the wj, to expand or 

shrink the output lattice in relation to the GC input space, while 

maintaining the same topology. 

We have implemented the learning process of Section 3.1 

using a set of MATLAB functions with a simple interface. The 

gestural training data is read from a file, and imported into a 

single matrix. During the learning process it provides some 

intermediate text information and it shows graphically the SOM 

learning process plotting and updating the wj grid over the G 

data after the dimensionality reduction. Plotting is supported for 

M less than 4. The learning function returns a single structure 

including all the data necessary for the various operational 

modes described in 3.2. For the NLDR we use the 

Dimensionality Reduction Toolbox
1
. The real-time GC 

operative modes are implemented in a separate MATLAB 

function, which exchanges data though the Open Sound Control 

(OSC) protocol, receiving the gestural data d and sending out 

p. The real-time GC is able to change its behavior in runtime in 

                                                                    

1
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimens
ionality_Reduction.html 

response to specific OSC messages. It is possible to change the 

operative modality, invert the output ranges, and modify the 

global scale factor for the wj. 

The integration with our VCI MAX/Msp system [6] is 

established through the OSC communication for the real time 

part, while the gestural training data is collected into a matrix in 

MAX/Msp and exported to a text file using FTM [19]. In the 

VCI prototype we implemented a larger vocal feature 

computation and a system for noisy features rejection based on 

vocal postures as described in [20]. A mixture of MFCC and 

PLP features represent the system’s gestural data. Even though 

we tested the different operative mode described in 3.2, in the 

evaluation experiments we work using a search space limited to 

the Moore neighborhood of the previous output node, which is 

the modality that better suits voice driven GC. 

The evaluation data presented here considers only the GC 

performances. We probe the measurement data before our DMI 

mapping system [21], which is integrated in the VCI. We ran 

two categories of tests using 10 different vocal gestural training 

data G. In the first category we verified the performances of the 

learning process. For each G we trained the two equivalent 

SOMs 20 times, one using our proposed method and the other 

one using the standard SOM method. We compared the two by 

measuring the frequency of global topology (twisting, folding, 

curling) and local topology distortions. These results are 

presented in Table 1, reporting the average over the 10 cases.  

In the second category of test we gave the user 3 minutes to 

learn and fine-tune the SOM-based GC, and a second GC 

obtained with our previous VCI approach having equal 

dimensionality and output resolution The user was then asked 

to perform two tasks. The first was to cover the highest number 

of GC output combinations possible (each lattice output node 

represents one combination) within 1 minute; the other was to 

maintain the output at 2
M

+1 key positions (vertices and center) 

for 5 seconds. We then measured the output stability in terms of 

standard deviation. The results are presented in Table 2, 

showing the average over the 10 cases. In these tests we 

refrained from mapping the GC output to any DMI in order to 

focus attention on the output signal itself that will be used for 

mapping. The presence of sonic feedback can ease some of the 

tasks thereby biasing the measurements. Performance might 

also have been influenced by the nonlinearities in the DMI 

parameters-to-sound response. Thus the only feedback provided 

in the user testing were the M on-screen continuous sliders and 

an M-dimensional grid. For these experiments, the G 

dimensionality N varies case by case between 7 and 28, while 

the N’ is usually either 2 or 3, typical for vocal gestural data. 
 

Table 1. Topology distortion performances comparison 

between standard and proposed learning process. 

Test 
Standard 

Training SOM 

Modified 

Training SOM 

% Global Topology 

Distortion 
63.5% 2.5% 

% Local Topology 

Distortion 
33% 6% 

 

Table 2. Use task comparison between the VCI GC and the 

Self-Organizing Gestures (SOG) based VCI GC. 

Task VCI GC 
SOG-VCI 

GC 

% Covered Output 

Combination 
74.3% 96.5% 

Key Positions Output Stability 

(standard deviation) 
0.14 0.06 



Table 1 shows the improvements in preserving the topology 

of the gestural training data. For the local distortion a negative 

mark is given for any number of output nodes not preserving 

the topology. In the 6% of cases showing local distortion 

obtained with our learning process there is usually only one 

node affected by a small topology distortion, resulting in only a 

slight impact in the GC response. For the standard learning 

process, when a local distortion is detected it usually affects a 

large number of output nodes. Moreover, we observed that 

global and local distortions are usually not simultaneous, 

therefore distortion-free topology cases for the standard 

learning process are below 10% for the standard SOM training. 

Table 2 shows better results for both tasks than our previous 

approach. Thanks to the SOM-based geometrical 

transformation we obtain a multidimensional GC where the 

number of reachable output combinations is close to 100%, 

while in our previous approach, constraints across different 

dimension resulted in forbidden regions. We observed that for 

the cases with M=2, we always obtain 100% for the first task. 

Moreover, we used other existing methods to spread the 

gestural training data coherently and uniformly throughout the 

M-dimensional hypercube, and we used different ANNs to 

learn the transformation function. In the 10 cases considered 

here, the ANN is unable to learn the transformation function in 

more than the half of the cases. The ANN learning 

performances was measured with the mean squared error on the 

gestural training data. 
 

5. CONCLUSIONS AND FUTURE WORK 
We presented an unsupervised method to obtain a Gestural 

Controller from a set of gesture examples, which converts an 

arbitrary distributed N-dimensional manifold into an M-

dimensional uniformly distributed hypercube, representing the 

GC output. Other than the performances presented in the tables 

above, this method presents high consistency across different 

instances of the learning process, producing extremely similar 

GCs. We developed this method to improve our VCI, but it is 

generic enough to be employed for any gestural data acquisition 

system. The various operational modes described in Section 3.2 

will be integrated in MAX/Msp to remove the MATLAB 

dependency for the real-time component. Moreover current 

work is also user-design oriented to study and evaluate aspects 

beyond the numerical measurements of the complete VCI 

integrated system. The visualizations of the training and real-

time data ease the learning curve for the user, but it still 

remains an issue when working with M larger than 3. 
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