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ABSTRACT
A system is presented for detecting common gestures, mu-
sical intentions and emotions of pianists in real-time using
kinesthetic data retrieved by wireless motion sensors. The
algorithm can detect six performer intended emotions such
as cheerful, mournful, and vigorous, completely and solely
based on low-sample-rate motion sensor data. The algo-
rithm can be trained in real-time or can work based on
previous training sets. Based on the classification, the sys-
tem offers feedback in by mapping the emotions to a color
set and presenting them as a flowing emotional spectrum
on the background of a piano roll. It also presents a small
circular object floating in the emotion space of Hevner’s
adjective circle. This allows a performer to get real-time
feedback regarding the emotional content conveyed in the
performance. The system was trained and tested using the
standard paradigm on a group of pianists, detected and
displayed structures and emotions, and it provided some
insightful results and conclusions.
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1. INTRODUCTION
In live performance, the dyad between performer and au-
dience creates an intimate setting where extreme emotions
manifest in music and gestural expressions. And it is the
integration and interaction of senses – sound and sight –
that the performer exploits in order to convey the verbally
ineffable.

From the motivation of expressive performance in com-
puter music, there have been ongoing attempts to quantify
and objectify the way in which human expression can be
embedded in an otherwise stale performance. The KTH
rule-system developed by Bresin and Friberg [8], describes
a set of rules applied to a musical score for it to sound lively
and expressive upon computer playback. This has led to an
enhanced understanding of how expression is conveyed in
the audio of a music performance. More recent develop-
ment and use of machine-learning algorithms has spawned
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research in human gesture recognition aimed at the con-
trol of audio effects via conducting gestures [5], and [14].
The motion of musicians in performance has also been ap-
proached to some extent, but mostly from a pedagogical
point of view [12]. Friberg [7] implemented a fuzzy logic
analyzer that uses audio data as well as video stream of a
performer to map to specific expression. The algorithm cal-
culates a parameter called Quantity of Motion (QoM) and
along with audio analysis can detect happiness, sadness, or
anger. Also recently, Gillian [11] developed a gesture recog-
nition toolbox for the EyesWeb1 environment that provides
a variety of machine-learning algorithms that can operate
in real-time. This environment was designed to explore and
develop interactive multidimensional musical interfaces and
displays [3].

It seems though, that the use of novel technologies such
as motion sensors and machine intelligence has not yet been
adopted by many musicians, which still mostly perform with
instruments employing technology from decades ago. One
justification to this phenomenon is that performers lack the
bandwidth required to master additional controls [4], or in
other words, they have their hands “tied”. This implies that
these technologies have still not been implemented in mu-
sical controllers in a way that is mature enough to create
music that can be mastered, widely adopted and appreci-
ated. It is possible that the inherent shortcoming these
controllers exhibit is that they require the performer to dis-
play a new distinguishable gesture that the computer could
detect. But why not rather have the controller learn to rec-
ognize the gestures that performers already create in their
playing? Mastering a controller such as this would impose
a minor requirement on musicians in terms of how much
they need to alter their movements. Such an intelligent
controller could be trained to detect various types of mu-
sical intentions, expressions, and musical emotions and use
this information to interact with the performer almost like a
fellow musician. This research presents a first step towards
an emotionally intelligent controller that can detect musical
expression and emotion in intuitive gestures based solely on
the existing kinesthetic data of piano players in real time.

2. METHOD
Our system is comprised of wireless motion sensors, a com-
puter, and a MIDI enabled piano. The system can work just
as well with an acoustic piano. The MIDI data was only
used to simplify data collection in the evaluation phase. In-
ertial measurment units (IMUs) are placed on each of the
pianist’s wrists. The pianist is instructed to play a spectrum
of emotions. We use the emotion categories first described

1http://www.infomus.org/eyesweb_eng.php
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in Hevner’s Adjective Circle [13] (see figure 1). Another
common measurement of emotions is using Russell’s Cir-
cumplex Model of Affect where musical emotion is mapped
in two dimensional space of valence vs. arousal [20]. How-
ever, the emotion categories in this model were not tailored
for musical emotions, and some are difficult to convey in
music. Moreover, it is possible to map Hevner’s circle to a
dimensional model similar to Russell [9].

Figure 1: Hevner’s Adjective Circle 1936 (from [13])

Based on preliminary testing we decided to omit category
number 1 (spiritual) because most of the subjects had dif-
ficulty conveying such an emotion in music and could not
perform it with enough repeatability. We also combined
categories 7 and 8 (exhilarated and vigorous) because the
difference between them was too subtle for the subjects to
perform with distinction. The data from the sensors are
recorded in synchronization with the MIDI signal. By do-
ing this and prior knowledge of the musicians’ intentions, we
can train a classifier to learn these emotions as described in
the following sections.

3. SYSTEM DESIGN
The system is comprised of Opal monitors from APDM2.
These sensors transmit nine values wirelessly to an access
point connected to a computer. The access point synchro-
nizes the data coming from the different sensors and buffers
it in to the operating system were the signal is received in
MATLAB for initial processing. The data is then trans-
mitted to the EyesWeb environment for real-time gesture
recognition. The classification algorithm uses a Näıve Bayes
approach employed in the SEC Machine Learning Toolbox
in EyesWeb [10]. The algorithm detects the emotions and
provides feedback to the user regarding the expressive char-
acter of the performance using two interactive displays.

3.1 Inertial Measurement Units
Opals are small wireless wrist worn motion sensors that
measure and transmit nine values: acceleration x, y, z, an-
gular velocity x, y, z, and magnetometer x, y, z. The mag-
netometer values are ignored because that would make the
training data based on orientation relative to the north
make the algorithm sensitive to the pianist’s position. The
data from the sensors is transmitted wirelessly to an access
point for synchronization. The access point is read utilizing
a set of functions in MATLAB in a dedicated SDK. The

2http://www.apdm.com/.

data is transmitted to the EyesWeb Environment via OSC
messages at 64 samples per second.

Figure 2: Opal monitors on hands.

3.2 Algorithm Description
Six dimensional data from two sensors are collected by the
system at 64 samples per second. This data is buffered
into three consecutive frames of 1 second each. This time
frame corresponds to a one measure in Andante tempo (∼60
BPM) [19], and in faster playing even more, consistent with
gestalt theory of music perception. Three windows are
buffered to account for short-term memory based on the
phonological loop buffer of 1–2 seconds for sound [1]. On
each signal for each frame the following features are cal-
culated: Mean, Standard Deviation,and RMS. In addition,
the following features are continuously evaluated from the
combination of the features: Tempo, Dynamics, and Artic-
ulation. These features have been reported as used by per-
formers to convey emotions in the lens model paradigm [16].
The features are then fed to a Bayes classifier in the ges-
ture recognition toolbox [11]. The intended emotion is also
passed to the classifier. In the training phase, the trainer
calculates the maximum likelihood parameters [6], µ and σ
for each feature based on a Gaussian density function and
stores it to a file. The predictor loads this file at start up
or upon request (after retraining), compares the new input
features to the trained data, and predicts the current class.
For more information on the classifier see [10].

3.3 Visual Feedback
The data are collected, trained and classified in real time.
The emotions are predicted as discrete integers 1–6 and dis-
played as text on the screen. To make the display more intu-
itive and to smooth the behavior of the algorithm, a moving
average is computed over the previous three seconds for sim-
ilar consideration of short term memory as above [1]. The
detected emotions are then mapped to colors on an HSV
color map and set the background of the piano roll based
on the MIDI input being played. The mapping of emotional
musical performances to colors has been studied in [2] and
was used as a reference for our color mapping. Displaying
the predictions this way allows for the feeling of a continuous
flow in the music along with the musical emotion coloring
that evolves in a natural rate similar to how we experience
emotional responses in music.

A second feedback display is the adjective circle projected
on an HSV color wheel. The detected emotion is shown
as a circular object with a tail-like trace floating in two-
dimensional emotion space. This creates a feeling of motion
to the algorithm and presents the performers with the com-
plete space while they adjust their playing to move from one
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Figure 3: Display of piano roll with emotion colored
background.

place to another, thus allowing the performer to “learn” the
system after the system has been trained on the performer.

Figure 4: Adjective circle mapped to HSV Color-
wheel with detected emotion.

4. EVALUATION
The system was evaluated on a homogenous group of 13
test subjects with an average playing experience of µ =
12.6 (σ = 4.8) yrs. The age group statistic was µ =
21.8 (σ = 3.0) yrs. The performers played the first few
measures of Bach’s Minuet in G major, BWV 841 from the
Notebook of Anna Magdalena Bach. The piece was played
six times in the six different emotion categories to create
the training data. This technique is the standard paradigm
and has shown successful results in similar research [17].
The performers were only allowed to make variations in
intensity, tempo, accents and slight pitch variations (ma-
jor/minor and decorations). The latter was justified with
the notion that the audio is not used for classification, so
tonality is not an affecting factor. This was repeated twice
while randomizing the order for training and testing. The
algorithm-classified emotion categories were tested against
the intended emotion categories. Each section was approx-
imately equal in length and lasted 15–20 seconds.

4.1 Results
The classification performance is summarized in the total
confusion matrix which is calculated by the sum of indi-
vidual subject confusion matrices (Figure 5). The results
show high performance in detecting most of the intended
emotions. A clear diagonal is observed in the confusion ma-
trix, with the main discrepancies occurring between the sad,
dreamy, and serene categories.

In order to understand the confusion matrix more, one
should observe it in varying levels of resolution. First, four
major blocks are clearly seen, the two on the main diagonal
are bright and the two on the remaining are dark. This is an
indication of the algorithm’s strong ability in distinguishing
between high and low arousal in emotions. The sad, dreamy,
and serene are low arousal and the humorous, cheerful, and
vigorous are high arousal categories.

Second, the inner diagonals are observed, this is an indi-
cation of the algorithm’s ability in distinguishing valence.
The sad and vigorous categories are considered low in va-
lence while the lyrical, humorous, and cheerful are in high
valence. The dreamy category is generally assumed neutral
in valence, a possible explanation as to why it gets confused
the most. The relatively large number of confusions between
adjacent categories such as dreamy, sad, and serene is also
consistent with the previously mentioned dimensionality in
the adjective circle [9].

Figure 5: Overall Confusion Matrix Stage 1. A clear
diagonal is observed, the main discrepancies are be-
tween dreamy, sad, and serene .

Based on the total confusion matrix, the results for Pre-
cision, Recall, Specificity, and Accuracy [18] are be obtained
per category (Table 1). The results show that the vigorous
emotion scored highest in all categories. This was expected
since the vigorous playing is very different and easily dis-
tinguishable from the other emotions. This is also consis-
tent with the functionalist perspective [15], i.e. that we are
programmed to be sensitive to emotions that can be life
threatening and are imperative to our survival.

The humorous and cheerful categories had similar results,
both were lower in precision and recall because they were
confused between each other. Their accuracy however, is
still relatively high because when detected, they were not
confused with other categories.

The sad and lyrical also had similar results but lower than
the other categories because they were often not only con-
fused between each other but also with dreamy. The dreamy
category had the lowest achievement in all categories. This
too, matches our expectation regarding its neutral valence.

5. CONCLUSIONS AND FUTURE WORK
We have implemented and evaluated a system for detect-
ing and displaying musical emotion and expression using
kinesthetic data from motion sensors in real time. Our re-
search shows that kinesthetic information from the pianists
reveals information regarding the technical and emotional
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Table 1: Precision, Recall, Specificity, and Accuracy as defined in [18]
Category Precision Recall Specificity Accuracy

sad/mournful 0.421 0.5582 0.8842 0.7647
dreamy/tender 0.4161 0.2999 0.8208 0.7578
lyrical/serene 0.5263 0.4371 0.8867 0.8351

humorous/playful 0.5072 0.5993 0.9311 0.8595
cheerful/merry 0.5203 0.4814 0.9159 0.8643

vigorous/dramatic 0.8137 0.8797 0.9813 0.9572

content of the music performed. This information can be
displayed as feedback to allow interactive composition and
performance. The results of our preliminary tests show that
the algorithm predicts the intended emotion with accuracy
in the range of 76% (dreamy/tender) up to 96% (vigor-
ous/dramatic). Due to the low sample rate of this type
of data and the availability of real-time machine learning
techniques, it should be possible to achieve high accuracy in
detection in real-time performance. Live information such
as this could be used to facilitate emotionally augmented
performances and a new experience of live music.

Further research now being performed with this system
involves studying the evolution of emotion in time as the
music progresses. Such evolution could be the motion path
around the adjective circle during a section of the piece.
These patterns could reveal helpful information regarding
the structure and composition of the piece as well as the
psycho-expressive dynamics during a musical performance.
Furthermore, in this research the system was trained on
performer intentions, future work could use listener evalu-
ations to train the system. Then, a three-way comparison
could be done comparing the performer intended emotion
to the listener perceived emotions and the algorithm’s pre-
dictions. This would allow real-time observation of the lens
model suggested by Juslin [16].
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