
SONIFYING GAME-SPACE CHOREOGRAPHIES
WITH UDKOSC

Robert Hamilton
Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University
rob@ccrma.stanford.edu

Figure 1: A UDKOSC driven player character in an OSC-controlled dive.

ABSTRACT
With a nod towards digital puppetry and game-based film
genres such as machinima, recent additions to UDKOSC
o↵er an Open Sound Control (OSC) input layer for ex-
ternal control over both third-person ”pawn” entities, first-
person ”player” actors and camera controllers in fully ren-
dered game-space. Real-time OSC input, driven by algo-
rithmic process or parsed from a human-readable timed
scripting syntax allows users to shape intricate choreogra-
phies of timed gesture, in this case actor motion and action,
as well as an audiences’ view into a game-space environ-
ment. As UDKOSC outputs real-time coordinate and ac-
tion data generated by UDK pawns and players with OSC,
individual as well as aggregate virtual actor gestures and
motion can be leveraged as drivers for both creative and
procedural/adaptive gaming music and audio concerns.

Keywords
procedural music, procedural audio, interactive sonification,
game music, Open Sound Control

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.

Copyright remains with the author(s).

1. INTRODUCTION
Virtual environments from gaming engines have been repur-
posed by various artistic communities for uses ranging from
digital filmmaking to interactive networked musical perfor-
mance [4]. Digital actors controlled in real-time by individ-
ual performers interacting over networks require much the
same rehearsal e↵orts and ensemble choreographies neces-
sary to coordinate actors and dancers in similar ”real-world”
performances. While artificially intelligent or ”AI” units ca-
pable of reactive motion and action are common in many
gaming experiences, external algorithmic or scripted con-
trol of game-space actors are not standard components of
existent gaming toolsets.
The use of OSC [11] commands as a control system for

game engines allows users the flexibility to create direct
causal relationships between external data or control sources
and intricate in-game motion and action. The OSC imple-
mentation for UDKOSC a↵ords users the choice of detailed
scripting tools (such as the included OSCControl applica-
tion) or custom algorithmic control systems of their own
design. In short, any data source that can be abstracted
into a series of Open Sound Control messages can be used
as input to the system.
Complex relationships between multiple game-entities can

be tested, prototyped and ultimately driven by any OSC-
compatible language. For a project like UDKOSC which
already exports game-data over OSC for external process-
ing and analysis, the proverbial loop has been closed, allow-
ing completely autonomous control over game motion and
action by any algorithmic or process-based system.

�4�4�6



UDKOSC
Game Server

Real-Time
Player Control

oscpack.dll

Sound Server
(ChucK, SC)

Audio
Output

OSC

OSCPawn Controls

Player/Camera Controls

OSCControl
Application(s)

Figure 2: Flow

2. UDKOSC
Introduced in 2011, UDKOSC1 is an open-source game-
type modification to the Unreal Development Kit (UDK)2

gaming engine featuring OSC input and output streams for
the controlling, tracking and sonification of in-game actions
and motions [5]. Customized game functionalities built into
UDKOSC are applicable to modalities including real-time
musical performance and composition, dynamic local and
networked performance, procedural music/audio and rapid-
prototyping of interactive game-sound design.
UDKOSC was designed to support the creation of im-

mersive mixed-reality musical performance spaces as well as
to serve as a rapid prototyping workflow tool for procedu-
ral/adaptive game audio professionals [10][7]. Data points
tracked in UDKOSC include actor, projectile and static
mesh coordinate positions in world-space, in-game events
such as collision, and real-time ray tracing from player ac-
tors to identify interaction with specific object types and
classes.
UDKOSC is a set of UDK custom class files, which when

compiled, take the form of a custom game-type within the
UDK. When users launch a UDKOSC game instance, a cus-
tomized oscpack Windows .dll is bound to the game engine
using Unrealscript’s DLLBind functionality. From the UDK
commandline, Users can then instantiate an oscpack UDP
connection, assign a target hostname and port, and toggle
on or o↵ OSC input and output streams.
As seen in Figure 2, OSC input to UDKOSC is read via

oscpack and mapped to a series of data structures that are
shared between the Windows C++ .dll and the custom UD-
KOSC class files. OSC output from UDKOSC is similarly
passed back to oscpack and pushed out over UDP to the
defined target hostname and port. And while most current
uses of UDKOSC connect a sound-generating server to the
OSC output stream, that data can in theory be used for any
analytical or archiving purposes as well.
Input data for the control of game pawn, player or camera

actors is designed to o↵er detail and flexibility in the manner
in which actors are moved and controlled within the game
engine. OSC input can be used to drive actor velocity and
rotation in three-dimensions, and can be targeted towards
numerous entities individually or simultaeously through the
use of OSC bundles. In this way, detailed choreographed

1https://github.com/robertkhamilton/udkosc
2http://www.udk.com

positioning and action can be carried out, from Figure 2’s
spelling of ”NIME”with 37 UDKOSC Pawns, to the ”flock-
ing” actions of bird actors, to intricate camera motion and
cut scenes.
A more complete description of UDKOSC and a series of

past multi-modal musical project implementations featur-
ing UDKOSC can be found in [6]. A detailed development
history of the project can also be found on the CCRMA
UDKOSC Wiki page3.

3. RELATED WORK
The control of visual elements using OSC messages can
be found in a number of interactive multi-media projects.
In the Processing language, OSC control is made possible
through the use of user libraries such as Andreas Schlegel’s
oscP5 library[8]. Similarly, in the Unity game engine, Jorge
Garcia’s UnityOSC project allows for bidirectional OSC
communication [3]. The control of virtual gesture specif-
ically for the synthesis of musical sound has been investi-
gated by Bouënard et. al with an eye towards the cap-
ture and understanding of natural performative gestures
[1]. And Steven Sinclair’s work with DIMPLE looked to
the manipulation of virtual objects using OSC and their re-
sultant physics-based behaviors as musical controllers [9].
The use of commercial gaming platforms for musical sonifi-
cation has also recently been explored by Cerqueira et al. in
their Soundcraft performance piece, wherein an online bat-
tle within the Starcraft 2 video game serves as control data
for a multi-channel musical work, sonified in ChucK[2].

4. VIRTUAL GESTURE
Within the scope of this project, virtual gesture can be de-
fined as any series of actions or motions performed by one
or more game-space actors within a given time frame. For
instance, a dance-like series of motions (”actor sprints up a
ramp, jumps, twirls and lands”) or a more direct mapping
of human-physical gesture via a Microsoft Kinect controller
(”actor’s skeletal mesh mimicks user swinging an arm side-
to-side”) are each considered a ”gesture” in this context.
Similarly, as in human dance, fully choreographed group
”gestures” can be comprised of multiple actors moving in a
coordinated fashion.
In the recent UDKOSC work ECHO::Canyon, which tracked

the flight and interactions between a ”Valkordia”, a bird-like
3https://ccrma.stanford.edu/wiki/UDKOSC

�4�4�7



creature, and its environment, gestures idomatic to flight
were used, such as diving, swooping, and flocking (with
OSC-controlled pawn units) 4. Similarly, in the 2010 UD-
KOSC work Tele-harmonium, the primary character ges-
tures focused on a robot actor’s motion around an environ-
ment as well as the flight and homing patterns of glowing
projectiles.

5. OSCCONTROL
OSCControl is a small ruby application that translates sets
of human-readable control commands into OSC messages or
bundles, complete with accurate timing information. OS-
CControl makes use of the osc-ruby5 Ruby gem for OSC
message and bundle generation. Users can create scripts
controlling both pawn and camera movements. A series of
scripted commands are processed by OSCControl, format-
ting them as valid timed OSC messages, and sending them
to the desired IP and PORT of a running UDKOSC server.
Slewed parameter values over specific time intervals are easy
to create, as are batched commands, sent as OSC bundles.
OSCControl currently creates a time-ordered array of valid

OSC messages and bundles and subsequently streams entire
control scripts serially, meaning any timed commands writ-
ten in the script will be sent in an ordered fashion. So at
each execution of OSCControl, the generated batch of OSC
messages and bundles are streamed out to the desired target
host and port in real-time.
OSCControl scripting commands are formatted in a human-

readable format that allows for single-line description of
slewed values. There are two primary classes of scripting
commands, those that control instances of the UDK OSC-
Pawn class and those that control instances of the default
Camera class.

5.1 Actor Controls
In UDKOSC there are currently three types of Actors: human-
controlled ”players”, script controlled ”pawns”and game AI-
controlled ”bots”. ”Player” and ”Pawn” commands start re-
spectively with ”playermove” or ”pawnmove”, and are fol-
lowed by a series of parameters, their associated target val-
ues, an optional ”slew” time, and a userid number.

pawnmove <action> <target> <slew> <player-id>

For example, a simple command to immediately set a
player’s speed to 4000 (approximately 10x the default UDK
pawn speed) would use:

playermove speed 4000.0 1

Here, ”4000.0” is the value of the player’s speed parame-
ter. As there is no ”slew” time associated with this message,
the speed change will happen instantly, resulting in an OSC
message that looks like:

/udkosc/script/playermove/speed 4000.0 1

We can make this call more interesting by interpolating an
actors speed from its current value (stored in OSCControl)
to the target value (”2000.0” in this example) over a period
of time, represented in milli-seconds. It should be noted
that while OSCControl’s default temporal step-size is 20
ms, that value can be adjusted as necessary.

playermove speed 2000.0 200.0 1

4http://www.ustream.tv/recorded/31968509
5https://github.com/aberant/osc-ruby

/udkosc/script/playermove/speed 200.000000 1

/udkosc/script/playermove/speed 400.000000 1

/udkosc/script/playermove/speed 600.000000 1

/udkosc/script/playermove/speed 800.000000 1

/udkosc/script/playermove/speed 1000.000000 1

/udkosc/script/playermove/speed 1200.000000 1

/udkosc/script/playermove/speed 1400.000000 1

/udkosc/script/playermove/speed 1600.000000 1

/udkosc/script/playermove/speed 1800.000000 1

/udkosc/script/playermove/speed 2000.000000 1

So over the slew period of 200.0 ms, we ramp the player’s
speed parameter from its current value (here a value of 0.0)
to the target value of 2000.0.
Actors - either players or pawns - can be controlled us-

ing the following commands. Some commands can be used
with slew timings while others, which typically control sin-
gle discrete events like ”jump” or ”crouch” cannot be used
with slew timings. A description of each control follows:

pawnmove x <degree-value> <slew-time> <userid>

pawnmove y <degree-value> <slew-time> <userid>

pawnmove z <degree-value> <slew-time> <userid>

playermove pitch <degree-value> <slew-time> <userid>

playermove yaw <degree-value> <slew-time> <userid>

playermove roll <degree-value> <slew-time> <userid>

pawnmove speed <value> <slew-time> <userid>

playermove jump <height-value> <userid>

pawnmove teleport <x> <y> <z> <userid>

playermove stop <userid>

To move an actor in a specific direction, the ”playermove”
or ”pawnmove” commands with X, Y, and Z coordinates are
used to set the actor’s direction vector with a degree value
relative to the world’s absolute coordinate grid. If the user’s
speed is set to be non-0, setting the X and Y coordinates
will start the user moving in the desired direction. As the Z
coordinate represents the vertical plane, Z coordinate mo-
tion will only cause e↵ect if the user is currently in a flying
state.

5.1.1 Stop Control
To stop an actor’s motion, we use the ”playermove stop
<userid>” command. This will stop the actor moving. No
value needs to be sent with a stop command and after a
stop command is sent, the next playermove x, y, z, or jump
command will toggle the stop state o↵, allowing the user to
move freely.

5.1.2 Speed Control
Actor speed can be set using ”playermove speed <value>
<ms-slew> <userid>”. The UDK default speed is 300-
400 in UnrealScript. A speed of ”0” will not allow Actors
to move in any direction. Speed values can be slewed, to
create accelerations or decelerations.

5.1.3 Jump Control
An Actor can be made to jump by sending a ”playermove
jump <height-value> <userid>” message. The height to
which the user will jump is sent as the value for the jump
message.

5.1.4 Teleport Control
Actors can be moved to any coordinate location in the cur-
rent environment instantly using the teleport command.
This is useful in starting actor motions and actions from
a specific location.

�4�4�8



6. CAMERA CONTROLS
The Camera associated with an actor can be controlled in-
dependently using the following commands. Note that cam-
era controls are formatted in much the same way as player
controls except that there is currently no ”cameraid” in use:

cameramove x <degree-value> <ms-slew>

cameramove y <degree-value> <ms-slew>

cameramove z <degree-value> <ms-slew>

cameramove pitch <degree-value> <ms-slew>

cameramove yaw <degree-value> <ms-slew>

cameramove roll <degree-value> <ms-slew>

7. APPLICATIONS
External control of in-game actors has applications for both
research and artistic purposes.

7.1 Research Applications
The ability to script specific sets of actor motions and ac-
tions a↵ords researchers a recreatable dynamic virtual ges-
ture set that can itself be interacted with by autonomous
subjects operating within the virtual environment. As part
of an ongoing study into the perceptual coherence of sonified
game-space gesture, UDKOSC gesture scripting is already
in use, creating gestures for musical sonification.

7.2 Artistic Applications
One ongoing artistic direction with UDKOSC gestural script-
ing is the creation of choreographies controlling multiple
actors, much along the lines of a classic Hollywood musical
chorus line. Such complex multi-user choreographies have
proven di�cult to coordinate by human users working with
manual game control systems. Through scripting, we can
create tightly synchronized formations and coordinated ac-
tions and map them to musical structures.

7.2.1 ECHO::Canyon
The first musical work to make use of UDKOSC’s new
scripting controls was ECHO::Canyon by composer Robert
Hamilton and visual artist Chris Platz, an interactive audio-
visual piece tracking the motion of a flying character through
a rendered environment. During the work, ECHO::Canyon
makes full use of UDKOSC’s player, pawn and camera con-
trol systems, moving between OSC control and manual con-
trol at various times in the piece.
The work begins with the player character, a bird-like

creature called a Valkordia (see Figure Figure 3) sitting atop
a mountain top. OSC output calculating the player’s dis-
tance from a large crystal is used to drive multi-channel
sound synthesis. In the opening scene, the camera is de-
tached from the pawn and moves slowly across the game
world, eventually catching up to the player character and
attaching itself to the character’s viewpoint. At this point,
the pawn launches itself into the air, and begins a flight
sequence controlled by OSC, skimming the ground (driving
another synthesis process), and eventually flying to a deter-
mined location, where control over the player is relinquished
to the live performer.
During these choreographed sequences, OSC has also been

controlling the flight paths of a flock of birds, whose height
over the landscape is being used to drive yet another syn-
thesis process. The rich soundscapes generated by these
interactions serve as a strong showcase for the potential of
future scripted control examples made with UDKOSC.

Figure 3: A Valkordia pawn controlled by OSCCon-
trol in the work ECHO::Canyon, with a sounding
crystal visible on the mountain peak.

8. REFERENCES
[1] A. Bouënard, M. Wanderley, and S. Gibet. Gesture

control of sound synthesis: Analysis and classification
of percussion gestures. Acta Acustica United With
Acustica, 96(4):668–677, 2010.

[2] M. Cerqueira, S. Salazar, and G. Wang. Soundcraft:
Transducing starcraft 2. In Proceedings of the New
Interfaces for Musical Expression Conference,
Daejeon, Korea, 2013. NIME.

[3] J. Garcia. Unityosc github repository.
https://github.com/jorgegarcia/UnityOSC.
Accessed: 2013-04-26.

[4] R. Hamilton. q3osc: or how i learned to stop worrying
and love the game. In Proceedings of the International
Computer Music Association Conference, Belfast,
Ireland, 2008. ICMA.

[5] R. Hamilton. Udkosc: An immersive musical
environment. In Proceedings of the International
Computer Music Association Conference,
Huddersfield, UK, 2011. ICMA.

[6] R. Hamilton, J.-P. Caceres, C. Nanou, and C. Platz.
Multi-modal musical environments for mixed-reality
performnace. Journal for Multimodal User Interfaces
(JMUI), 4:147–156, 2011.

[7] L. J. Paul. Video game audio prototyping with pure
data.

[8] A. Schlegel. oscp5: An implementation of the osc
protocol for processing.
http://www.sojamo.de/libraries/oscP5/, 2011.
Accessed: 2013-04-26.

[9] S. Sinclair and M. M. Wanderley. A run-time
programmable simulator to enable multi-modal
interaction with rigid-body systems. Interact.
Comput., 21(1-2):54–63, Jan. 2009.

[10] C. Verron and G. Drettakis. Procedural audio
modeling for particle-based environmental e↵ects. In
Proceedings of the 133rd AES Convention. AES, 2012.

[11] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the International Computer Music
Association Conference, pages 101–104, San
Francisco, USA, 1997. ICMA.

�4�4�9




