
Variator: A Creativity Support Tool for Music
Composition

Avneesh Sarwate
Princeton University

Department of Computer Science
asarwate@princeton.edu

Rebecca Fiebrink
Princeton University

Department of Computer Science (also Music)
fiebrink@princeton.edu

ABSTRACT
The Variator is a compositional assistance tool that aims to let
users quickly produce and experiment with variations on
musical objects, such as chords, melodies, and chord
progressions. The transformations performed by the Variator
can range from standard counterpoint transformations
(inversion, retrograde, transposition) to more complicated
custom transformations, and the system is built to encourage
the writing of custom transformations. This paper explores the
design decisions involved in creating a compositional
assistance tool, describes the Variator interface and a
preliminary set of implemented transformation functions,
analyzes the results of the evaluations of a prototype system,
and lays out future plans for expanding upon that system, both
as a stand-alone application and as the basis for an open
source/collaborative community where users can implement
and share their own transformation functions.

Keywords
Composition assistance tool, computer-aided composition,
social composition.

1. INTRODUCTION
The motivation for Variator is to create a system that can help
assist human creativity by attempting to tackle the problem of
musical writer’s block. Such a system should allow users to
quickly insert, tinker with, and play the musical objects that
they are working with in a relatively seamless manner. It should
also support exploratory search and rich history-keeping,
according to the guidelines for “creativity support tools”
proposed by Shneiderman [9]. Variator attempts to provide an
interface that allows users to quickly and painlessly search
through “musical space” and keep track of their progress, so
they do not lose good ideas once they find them. Furthermore,
Variator aims to incorporate musical intelligence in order to
generate new music not explicitly written by the user. The use
of musical intelligence within the framework of a creativity
support tool differentiates Variator from existing systems.

2. RELATED WORK
Existing popular notation tools and Digital Audio Workstations
offer users a fairly quick and easy way to notate, modify, and
play back music. However, none of these systems exhibit much
“musical intelligence.” Notation software packages incorporate
some minimal musical knowledge, as they can exploit the basic
relationships and rules that govern the diatonic key structure to
expedite the process of entering notes into a score. For
example, when entering music into a score where a specific key
has been chosen, keyboard shortcuts exist to quickly add

harmonies to existing notes. The software can also shift
segments up or down along the staff, and it automatically
groups notes according to the chosen time signature. However,
these features mostly amount to minimal arithmetic based on
simple and explicitly chosen patterns. The piano roll layout for
most DAWs offers even less, simply offering a way to shift
selected notes up or down on the piano.

On the other end, there are systems that exhibit a high degree
of musical intelligence, but that do not allow a high degree of
control over the type of music produced. The most famous
example may be David Cope’s Experiments in Musical
Intelligence, which, after learning from a corpus of works, can
produce entire pieces [4]. Cope’s stated initial motivation for
the project—a cure for “composers’ block”—is similar to the
motivation behind Variator. However, while Cope’s system
exhibits a very high degree of musical knowledge, it does not
provide low-level control over the music produced. In contrast,
Variator allows users to control the production of music at the
level of individual melodies or chord progressions.

Another related system is Pachet’s Continuator (from which
Variator borrows its titular theme) [7]. The Continuator lies
between the domains of probabilistic music generation systems
and interactive music systems. The Continuator’s real-time
musical output is driven both by a Markov model learned from
an offline musical corpus and by the real-time input of a
collaborating human musician.
 Other systems offering a mix of musical intelligence and user
control also exist, but they are not easily usable by the average
musician. OpenMusic is a visual interface to the Lisp
programming language that functions as a powerful and
flexible computer-assisted composition tool [1]. It allows users
to build modular “patches” to process, display, and play
musical data. It provides representations of musical objects
such as chords and melodic “parts,” and users can create their
own patches to transform or generate these objects. Though
very flexible, OpenMusic is quite a departure from the
conventional interface of more popular music writing tools, and
the logic behind visual programming could prove a deterrent to
its use by non-programers. Rather than having to deal with the
full abstraction of a programming language or learn to organize
a graphical programming language, users need only understand
the idea of a “function” and how to call one to use Variator.
 Pachet’s work on description-based design [8] suggests one
possible approach for implementing musical transformations.
Pachet’s system uses machine learning to allow users to train a
classifier to recognize a certain musical descriptor; it then
generates variations on a melodic phrase that fit “more” or
“less” with this learned descriptor. Learning-based generators
could be implemented in Variator, but there are many
possibilities for transformations based on explicit rules,
stochastic decision-making, or iterative design to be
implemented as well. Pachet also discusses the possibility of
using social tagging systems to let a community of users
classify melodies, and then using a learning algorithm to learn
descriptors based off of these tags. A longer-term goal of
Variator is to leverage such community-derived information in
the creation of music transformation modules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’13, May 27-30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

�2�7�9

Music21 is a Python library that allows users to quickly query
stores of music data for various types of information. It also
implements representations of objects and melodic phrases, and
operations on those phrases. It allows users to graph many
different musical “quantities” of musical objects or a whole
corpus, and it includes a limited number of functions for music
generation, many based on Baroque counterpoint rules [2].
However, its implementation as a Python library could preclude
non-programmers from quickly adapting it, and it does not
include a user interface.

While previous systems have provided either musical
intelligence or an interface that is accessible to a wide range of
users, none have been particularly successful at combining the
two. Variator aims to incorporate both of these features into a
tool for computer-aided composition (CAC) that is accessible
to non-programmers, and a platform that allows musicians to
program their own transformations as easily as possible.

3. THE VARIATOR SYSTEM
Variator is implemented in Python and ChucK [10]. The GUI is
built using TKInter, Python’s interface to the TK GUI Tool. All
of the transformation functions are implemented as functions in
Python modules. Variator also allows the user to play back the
musical objects created, and ChucK is used as the sound
producing back-end. All communication between Python and
ChucK is done using Open Sound Control.

3.1 Interface Elements
Variator provides an interface that allows the user to create and
manipulate musical objects. Variator currently works with three
different types of musical objects: melodic phrases, chords, and
progressions. Phrases are single-voice melodies, represented as
corresponding lists of notes and times. Phrases can also
optionally have a string denoting their key. Chords are
represented as a list of notes.
 Chords also specify the note that is the root of the chord, set
by default to the lowest note. Chords also have an optional
string specifying the name of the chord. Progressions are chord
progressions, and they are represented by parallel lists of
chords and associated times. Currently, progressions can only
be created from previously-created chords. The interface,
whose whole layout is show in Figure 1, has four main
components, described below.

3.1.1 Input
To create an object, users start at the input window, shown in
Figure 2. All objects input to Variator must be given variable
names. Object types need not be declared explicitly; they are
inferred from the input data. Notes will be recognized as a
chord, notes and times as a phrase, and chords and times as a
progression. Notes are input as integer values corresponding to

MIDI note numbers. Optional attributes, such as associating a
key with a phrase, or a non-default root or a name for the chord,
can be specified in the bottom input box.

3.1.2 Object Editor
Once an object has been input, it will be displayed in the object
editor (Figure 3). The object editor allows users both to see all
of the objects currently defined in Variator and to edit them.
The editor window displays each object succinctly in text
format, using a concise syntax (varName:KeyString:
objectRep-resentation) for each object. Users can directly
edit the text to modify objects. Users can save and reload
objects as text.

3.1.3 Coding Area
Users execute transformations on objects in the coding area
(Figure 4). All objects in Variator are implemented as Python
objects, and all transformations are Python functions that take
Python/Variator objects as arguments and return other
Python/Variator objects. Transformations are executed in
standard Python in the coding area as seen in Figure 3. New
code can be immediately executed by pressing the “Run Code”
button to the right of the coding area.

3.1.4 Output window
The output window is a simple output terminal. The
output() command prints its argument(s) in the Variator
output window in a text format that allows the user to save
them for later use by copying them directly to the object editor
window.

3.2 Transformations
The core novelty of Variator lies in its transformative approach
to music generation. The transformations allow users to create
variations of their own objects extremely rapidly, thus letting
users traverse “musical space” very quickly. Each

Figure 1. Variator interface: (clockwise from top left)
object editor, output window, input, code editor

Figure 2. Variator object input area

Figure 3. Variator object editor

.

Figure 4. A simple code example. The “phrase” module
contains a group of built in transformations. This

example takes the existing phrase called “c”,
transforms it, plays it, and prints the string

representation of “e” to the output

.

�2�8�0

transformation is implemented as a Python function that takes
in a Variator/Python object as one of its arguments, and then
produces a different Variator/Python object. Variator comes
with several built-in transformations, and users can easily
define their own transformations through code. Users can
implement transformations as Python functions and add their
code to the Variator source.

3.2.1 Built-In Transformations
In addition to standard counterpoint transformations
(transposition, retrograde, inversion), Variator includes the
following built-in transformations:
• Interpolations between two phrases: The transformation

function takes two phrases and a floating-point value (0, 1) as
arguments. The floating-point value determines whether the
output will be more like the first phrase argument (values
closer to 0), or the second (values closer to 1). It is
implemented using the Levenshtein distance algorithm.

• Melodicizing a chord progression: The function takes a chord
progression and a melody as arguments and inverts each
chord in the progression to produce a new progression where
the top notes of each chord follow the melody as closely as
possible.

• Giving progressions a direction: This function takes a chord
progression and re-voices the chords so that all the top notes
either descend or ascend by the smallest possible intervals.

• Reevaluating rhythm: This function takes a phrase object and
an importance ranking over the scale of the phrase. Then,
based on the importance ranking, it redistributes the time
values of the phrase, assigning the longer time values to the
more “important” notes.

• Key-preserving transposition: This function transposes the
notes in a phrase by scale degree rather than by absolute
intervals, thus preserving the key of the original phrase.

• Key-preserving inversion: Rather than reversing the intervals
between each pair of notes, this function reverses the change
in scale degree between each pair of notes, thus preserving
the key of the original phrase.

• Fitting a melody to a chord progression: This function takes a
phrase, a chord progression, and a mix factor [0, 1]. For the
fraction of notes specified by the mix factor, the function
changes them to chord tones from the chord in the
progression over which the note will be played.

• Generating random “noise” in a phrase: This function selects
a random note in the scale and does one of several things:
shifts the note up or down by 0–5 semitones, changes the
duration of the note, adds a note within 5 semitones, removes
the note, or changes the duration of the note. The relative
probability with which it does these things is a parameter of
the function.

3.2.2 Helper Objects
Variator comes with several “helper” objects and functions to
help users build their own transformations. It contains:
• A function to change the key of a melody
• A function to change the mode of a melody (but preserve the

tonic of the scale)
• A function for detecting the key of a given melodic sequence
• Intervallic definitions of the modes of the major scale
• An “importance ranking” for notes of the major scale
• A function that, given a melodic sequence and a chord

progression, returns the segments of the sequence over each
chord in the progression

• A function to determine the best triad over a given melodic
sequence

• A function that fits a phrase to a given key

 The helper objects are subjectively defined in terms of
musical choices, and users may have different criteria for
determining them (e.g., a user might choose to fit a chord to
melody in a different way). They are included as templates for
users’ own definitions.

4. EVALUATION
We conducted a preliminary evaluation of Variator to assess the
potential usefulness of the overall system, and to identify room
for improvement in the user interface and the selection of built-
in transformations. We evaluated the system with a group of
four undergraduate students. All had some music experience,
with three being active in songwriting or composition. Of the
four, one had no coding experience, one had minimal coding
experience (basic HTML familiarity), and two had moderate
coding experience (introductory computer science classes).

The group was given a 20-minute tutorial demonstrating the
system and some of its functions. Participants were then given
the code to run on their own machines. They had one hour to
experiment with the system, and they were encouraged to write
music and to tinker with the code and write original functions.
 Afterwards, participants filled out a written survey. A first set
of questions asked them to about their overall likelihood to use
the system, and their likelihood to use CAC tools in general.
Participants were then asked to qualitatively describe their
songwriting process, and more specifically, what “parts” of the
song they generally tended to write before others (e.g., rhythms
before melodies before chords, etc). A second component of the
survey assessed the user interface using metrics proposed in the
Creativity Support Index [3], asking for users’ assessments of
the flexibility and intuitiveness of the interface, as well as their
perceived efficiency while using it. They were also asked for
suggestions for features and improvements. Finally,
participants were asked about their knowledge of music theory,
experience with writing music, and programming experience.

After individual responses were collected, all participants
were gathered for a group discussion on Variator’s strengths,
weaknesses, and potential directions for the future.

5. DISCUSSION
Overall, the evaluation showed two things: that users found the
core concept intriguing and the interface somewhat inefficient.
The user reports suggested that Shneiderman’s two key features
of Creativity Support Tools, rich history keeping and
exploratory search support, are weak in Variator. Although
history keeping exists, it requires that users actively manage
history keeping, and the visual representation of the history
does not quickly provide the desired information. Also, the
programming approach to executing transformations renders
the system all but unusable to those without coding experience.
 The interface of Variator provides an improvement over that
of the Continuator (at least in terms of music composition), by
providing a mechanism for history keeping at all. Continuator,
being a live-performance extender, has no such mechanism [at
least, none that the authors of this paper could find in
documentation]. Variator also offers the advantage that learning
it does not require one to deal with a full programming
language, as is necessary with OpenMusic and Music21. For
Variator, a user must simply understand the idea of variables,
functions, and function arguments to use all of the core
features. One of the users taking part in the evaluation did not
even have trivial experience with programming, but was able to
pick up the previously mentioned concepts and begin using
Variator in less than 10 minutes.
 It was noted that the one user with no background in music
theory seemed lost while experimenting in the system, and he
remarked that he didn’t know how to proceed without knowing
how the transformations worked. With this in mind, it may

�2�8�1

provide useful to divide further development of functions by
demographics. Functions for users with little music experience
could involve a high degree of intelligence, taking more of the
decision making away from the user, but providing “normal”
sounding music more often. Also, functions that randomly
generated “melodically consistent” objects, or even a set of
built-in phrases, chords and progressions, could allow novice
musicians a chance to explore the transformations without the
burden of creating the source objects. Functions aimed toward
more serious composers could incorporate more randomness, as
suggested, or involve transformations that are more systematic
and combinable into intricate systems. Two of the users with
more music theory experience suggested the inclusion of
additional random generator functions, suggesting that this
randomness could help overcome the initial problem of writer’s
block. Among the functions that users found particularly useful
was the random “noise” function, which allowed the users to
produce variations without having to think about how they
would guide the variations produced. Users were also satisfied
with the key-fitting function, which allowed them to
experiment freely without worrying about having to manually
make their new objects share keys with the rest.
 Users also brought up the question of how non-coders would
use the interface. Changes to the interface could allow non-
programmers to select transformations and arguments via
menus, but as a result, some of the flexibility of programming
would be lost. The choice to have a coding interface was made
to maximize flexibility during the development of Variator.
However, having multiple, selectable interfaces could solve this
problem. Users found the ability to directly edit saved objects
in the object editor helpful, but they suggested that the ability to
view objects in standard musical notation would greatly
improve efficiency. There is also the problem that non-coders
would not be able to design their own transformations. One
evaluation participant suggested that, if a community of
transformation makers were to form, non-coding users of the
system could post requests of transformations to be made by
those who can program. All users said that they would be
interested in using Variator’s musical intelligence to
experiment in their own composition.

6. FUTURE WORK
6.1 Interface Extensions
We plan to explore ways to allow users to define functions
within the graphical interface itself. This would both give users
the ability to prototype faster during function development, and
make the interface more expressive by allowing for immediate
customization of the tools available to the user.
 More long-term plans for Variator include integration with
notation software or DAWs. Variator could be much more
closely tied to the compositional process if it were integrated
with the tools musicians use most often to compose. In
particular, allowing copy/pasting of musical objects between
other software and Variator could virtually eliminate a huge
source of time overhead in its use.

6.2 Improving Transformation Tools
In order to facilitate the writing of functions by users, it would
be worthwhile to include more “low-level” objects and
functions based on more rigorous music theory research.
Functions that measured various definitions of distance
between different types of objects, as well as different measures
of “affinity” between objects would serve as useful building
blocks. Also, intervallic definitions for keys not generally
found in western music, as well as ways to “convert” melodies
to keys with different numbers of notes (e.g., hexatonic to

pentatonic) could provide users with a means of exploring new
soundscapes with less time spent learning the requisite theory.

6.3 Sharing Transformations
Creating a forum where users could share their transformation
functions could greatly expand the use of the system by
allowing users access to tools that they could not produce
themselves. A similar community exists based around the
products of guitar software manufacturer Line 6 [5]. Line 6
specializes in the digital modeling of guitar amplifiers and
effects, and has created a large online community where users
can share their presets with others. A community for Variator
“patches,” however, could prove even more useful. Allowing
users to share patches could allow those users with minimal
music theory knowledge to utilize transformations created by
more proficient theorists. Also, allowing users to share patches
could greatly increase the rate at which users generate their
own transformations, as they could more easily learn the
different ways to attack problems from reading others’ code,
and could modify existing patches to reach their specific goals
instead of starting from scratch.
 Creating a means to share functions could also create a new
model for collaborative composition. Teams of users could
work together on more ambitious projects, such as fitness
functions for hard-to-define adjectives like “funkiness” or
“jazziness”.

7. CONCLUSION
On the continuum of “interactivity” to “control” as defined by
Lippe [6], the Variator seems to fall very far to the side of
control. The lack of published research on systems offering the
same level of explicit low-level control suggests that there may
be a niche among composers for such a tool. Though users in
our evaluation found some elements of the Variator interface
inefficient, the overwhelming interest in the core concept shows
the Variator project to be a promising line of research.

8. REFERENCES
[1] Agon, C., Assayag, G., Bresson, J. 2005. OpenMusic 5: A

cross-platform release of the computer-assisted
composition environment. Proc. 10th Brazilian
Symposium on Computer Music.

[2] Ariza, C., Cuthbert, M. 2000. Music21: A toolkit for
computer-aided musicology and symbolic music data.
Proc. ISMIR.

[3] Carroll, E., Latulipe, C., Fung R., and Terry, M. 2009.
Creativity factor evaluation: Towards a standardized
survey metric for creativity support. Proc. ACM Creativity
& Cognition, 127–136.

[4] Cope, David. Experiments in musical intelligence.
http://artsites.ucsc.edu/faculty/cope/experiments.htm

[5] Line 6 CustomTone. http://line6.com/customtone/
[6] Lippe, C. 2002. Real-time interaction among composers,

performers, and computer systems. Notes of the
Information Processing Society of Japan, 123, 1–6.

[7] Pachet. Francois. 2003. The Continuator: Musical
interaction with style. Journal of New Music Research,
32(3): 333–341.

[8] Pachet, Francois. 2009. Description-based design of
melodies. Computer Music Journal 33(4): 56–68.

[9] Shneiderman, B. 2007. Creativity support tools:
Accelerating discovery and innovation. Communications
of the ACM 50(12): 20–32.

[10] Wang, Ge. 2008. The ChucK audio programming
language: A strongly-timed and on-the-fly
environ/mentality. PhD thesis, Princeton University,
Princeton, NJ, USA.

�2�8�2

