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ABSTRACT
We present an interactive content-based MIR environment
specifically designed to aid in the exploration of databases
of experimental electronic music, particularly in cases where
little or no metadata exist. In recent years, several rare
archives of early experimental electronic music have become
available. The Daphne Oram Collection contains one such
archive, consisting of approximately 120 hours of 1/4 inch
tape recordings and representing a period dating from circa
1957. This collection is recognized as an important mu-
sicological resource, representing aspects of the evolution
of electronic music practices, including early tape editing
methods, experimental synthesis techniques and composi-
tion. However, it is extremely challenging to derive mean-
ingful information from this dataset, primarily for three
reasons. First, the dataset is very large. Second, there
is limited metadata - some titles, track lists, and occasional
handwritten notes exist, but where this is true, the reliabil-
ity of the annotations are unknown. Finally, and most sig-
nificantly, as this is a collection of early experimental elec-
tronic music, the sonic characteristics of the material are
often not consistent with traditional musical information.
In other words, there is no score, no known instrumenta-
tion, and often no recognizable acoustic source. We present
a method for the construction of a frequency component
dictionary derived from the collection via Probabilistic La-
tent Component Analysis (PLCA), and demonstrate how
an interactive 3D visualization of the relationships between
the PLCA-derived dictionary and the archive is facilitating
researcher’s understanding of the data.
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mir, plca, mfcc, 3d browser, daphne oram, content-based
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1. INTRODUCTION
We present work that attempts to facilitate researchers work-
ing on understanding the life and work of Daphne Oram
through the creation of a visualization tool based on prob-
abilistic source separation-derived models of acoustic fea-
tures.
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The Daphne Oram Collection contains approximately 120
hours of 1/4 inch tape dating from approximately 1957 on-
wards. It is a record of the development of a number of
critical techniques in music production and synthesis and
includes a number of influential studio compositions, radio
plays, sound effects, lectures, and interviews [16]. Approx-
imately 60 hours of the collection has already been digi-
tized and has been made available to researchers working
on the Daphne Oram project. However, much of the meta-
data is of questionable quality, and at best difficult to ver-
ify. Furthermore, it is known that the collection contains
some duplicates and several tapes feature components used
by Oram in research and composition. Among these are
recordings of the Oramics machine, possibly the first syn-
thesis and computer-composition system ever built in the
United Kingdom.

There are a number of exciting content-based informa-
tion retrieval challenges that this collection presents. First,
what is the most effective way of making this huge collection
of unknown ”dark” media more available to its researchers?
Secondly, how do we relate to the media given that the
data itself contain almost no known instrumentation and no
material that could even remotely be understood through
MIDI or conventional score techniques? This is a significant
issue for many collections of electronic music where timbre
rather than pitch or instrument relationships are the pri-
mary composition method - there is little or no semantic
information of any kind. Thirdly, how do we locate, iden-
tify and represent extracts from the collection that might
contain important recordings such as fragments of known
works or recordings of the Oramics machine during its long
period of development? Answering these questions is not
only useful for the purposes of furthering research in musi-
cal information retrieval; it directly impacts on the research
results of archivists working to understand the history and
development of 20th century electronic music in Britain, of
which this collection is a primary resource.

We focus on visualizing the Daphne Oram archive us-
ing two methods for describing the archive: (1) discov-
ering latent distributions of frequencies using a recently
developed source separation algorithm, probabilistic latent
component analysis (PLCA) [13]; and (2), using a widely-
adopted multi-dimensional feature for speech, music, and
general acoustic classification, the Mel-Frequency Cepstral
Coefficients (MFCCs). We cluster the data from either de-
scriptor using Multidimensional Scaling and develop a 3D
visualization that allows researchers to project the archive
onto multiple dimensions of the data. Finally, we report
user-feedback from researchers of the archive using the 3D
visualization tool.

Our main contribution is in describing the impact of vi-
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sualizing latent timbre-relations of a large audio archive
through a case-driven exploration of the work of Daphne
Oram. We compare the feedback from archivists using a
visualization of latent timbre-relationships versus one using
a perceptually inspired multi-dimensional feature, MFCCs,
and show that PLCA is more effective at producing a mean-
ingful visualization.

2. PREVIOUS WORK
A number of previous approaches for visualizing large audio
corpora have focused on the application of music-based cor-
pora. Some approaches to content-based musical informa-
tion retrieval solutions require a user to search by example
or performance, aiding retrieval when a user is unaware of
exactly what they are looking for. However, visualization
of such retrieval methods often amounts to viewing lists of
the k-most similar results of an explicit query, and thus
any exploratory analysis of the corpus as a whole requires
further research into approaches for visualization. For in-
stance, SMILE [10] presents a MIDI-keyboard for the user
to“perform”a query, and results are presented based on how
similar the MIDI sequences are to the performance. Sim-
ilar approaches built for more generic signal-based audio
break a corpus into frequency information and further into
fingerprints such as MFCCs or psychacoustic descriptors.
audioDB [4, 11] for instance allows a user to input shingles,
or segments of an audio track for discovering similarities
in an archive. Other solutions such as Query-by-humming
allow a user to hum/sing a tune in order to discover sim-
ilar results (e.g. [15, 3]). The previous methods may be
suitable for applications where a user has an explicit exam-
ple query. However, in exploring an archive, it requires the
user to have a priori knowledge of what the archive already
contains.

Early work in exploratory content-based visualization sys-
tems can easily be traced to the 1990’s where Starfields were
commonly employed. Starfields are interactive scatter-plots
that allow for zooming, panning, and selection for greater
detail, allowing one to view an archive through interaction.
The Informedia Digital Video Library System (1994-1998)
[8, 5] is one such system making use of the Starfield visu-
alization approach, which accesses over a tera-byte of video
and presents the user with an interactive scatterplot orga-
nized by the user’s query. Beginning with the audio sig-
nal, Informedia-I uses the Sphinx-II speech recognition sys-
tem to discover annotations of audiovisual material. Adding
these to any existing text-annotations from captions, they
create a term-document frequency matrix for each video
segment, where segments are determined through the use
of motion-based video-cut detection. They are then able
to discover latent relationships using PCA for reduction
and visualization. Other approaches such as IVEE [1] al-
lowed for visualization options such as Tree Maps, Cone
Trees, and even 3D scatterplots, though were not rooted
in content-based information retrieval and instead relied on
explicit relations of existing meta-data. Though these early
works were not directed for musically-based archives, their
approaches towards visualization and interaction are very
similar to ours, as we also look for latent relationships for
reduction and visualization.

More recently, CataRT [12] approaches Starfield style vi-
sualizations of large audio corpora by computing low-level
psychoacoustic descriptors of grains segmented from a cor-
pus for the purposes of composition, orchestration, and tex-
ture synthesis. Visualizing the resulting mappings occurs
in a 2D space where each axis is defined by a descriptor
chosen by the user. Such a visualization has the benefit

of user awareness and control over the mappings that de-
fine a parametric spatial mapping. Plumage [12] extends
the CataRT visualization into a 3D space creating a per-
formance and composition environment where grains are
colored, textured, and morphed in 3D space based on their
psychoacoustic descriptions. nepTUNE [9] and [6] are two
approaches to visualization which create a 3D terrain-style
virtual space. Songs are clustered using a self-organizing
map of acoustic similarity in order to create virtual islands
and terrain based on their clustering density. The created
virtual space thus encourages exploration and navigation
of the visualized corpus. [2]’s approach employs the use of
chroma-features for producing audio thumbnails of tracks,
or segmented versions of an audio track encoding heavily re-
peated structures of harmonic relationships. Though their
approach is well-suited for popular music archives, they note
that it is not suitable for music that does not obey a sim-
ple “verse-refrain” form. [14] uses mood words to describe
a 3D interactive visualization, though relies on having ac-
cess to socially tagged music in order to represent the music
archive. [7] use MFCCs to describe an unknown corpus of
audio and explore the audio using a 2D visualization created
with a self-organizing map.

The critical deviation of our approach to feature analy-
sis from the previous approaches is by defining a 3D space
using the corpora’s own latent frequency distributions. As
we make no assumptions to the structure, perceptual rele-
vance, or harmonic nature of the corpus, using probabilistic
latent component analysis, we can discover the archive’s
own predominant distributions of frequencies and are able
to use this reduced dimensionality dictionary as a represen-
tation of a high-dimensional space. When projecting any
3-dimensions, the user is able to navigate the archive in
a manner similar to CataRT [12]. However, the axes are
not user-defined psychoacoustic descriptions, but rather are
projections of the archive onto “timbres” defined by latent
frequency distributions. Our work similarly encourages ex-
ploration and navigation as in [9, 6, 7], though takes a
information-centric point of view to analysis and retrieval.
We build a second visualization using a model which does
not take into account the density of the data but instead
uses a perceptual frequency transformation for building decor-
related features, MFCCs, similar to [7] and report the user
feedback for each visualization.

3. METHOD
Currently, the Daphne Oram Archive has over 215 tape reels
or 60 hours digitized. As the amount of available memory is
a constraint on our approach, we are only able to investigate
the first 10 minutes of the first 60 tape reels or 10 hours in
total. We describe each half second segment by their fre-
quencies over time, described using the short-time Fourier
transform, and describe each time-frequency matrix as a
slice. In total we have 1200 slices per tape and 72,000 slices
for all 60 tape reels1. We aim to visualize this data using a
clustering algorithm able to extract the timbre-relationships
within the archive. Specifically, we look at two methods for
grouping the possible interesting frequencies describing the
archive: (1) PLCA, a probabilistic method for discovering
latent component relationships of a time-frequency matrix,
and (2) MFCC, a widely-adopted approximation of the fre-
quency spectrum inspired by the human auditory system’s
response properties.

3.1 PLCA model
1We use all data for building the description of the corpus,
though later use a reduced subset for visualization.

�2�2�8



We take an information theoretic point of view to represent-
ing an unlabeled audio archive and try to treat the problem
of explaining the extracted slices from the Oram archive
using a regression analysis. Assuming there are latent dis-
tributions of frequencies that occur throughout the archive,
we can aim to recover these distributions into a dictionary
of frequency distributions essentially defining timbres that
occur throughout the archive. We can then discover how
any slice in the archive can be explained by calculating
the normalized sum of all timbres in the dictionary. In
order to do so, we make use of a recently developed model
for source separation, probabilistic latent component anal-
ysis [13] and employ Bayesian Information Criterion-based
model selection in order to automatically discover an appro-
priate number of components/distributions for modeling the
entire archive.

3.1.1 Basic Formulation
The basic PLCA model described in [13] treats a time-
frequency matrix of magnitudes as a multinomial distribu-
tion described by a set of latent factors:

Xf,t = p(f, t) ≈
N∑
i

p(ki)p(f |ki)p(t|ki) (1)

where p(f, t) describes the frequency f = 1, ..., R versus
time t = 1, ..., C matrix as a probabilistic function, ki is the
ith latent component up to N components, p(ki) the prob-
ability of observing the latent component ki, p(f |ki), the
spectral basis vector, and p(t|ki), the vector of weights over
time. Thus, the spectral basis vectors and temporal weights
are described as a multinomial distribution, where the ac-
tual density of the data describes the frequency and time
marginals. The spectral basis vector is intuitively under-
stood as the frequencies describing a particular source and
the temporal weights as the envelope of sound of the source
across time. When multiplied together with their mixing
weight, p(ki), they produce a 2D matrix of the source over
time, while adding all N matrices produces the approxima-
tion to the original matrix X.

Formally discovering the marginals requires computing
their maximum likelihood estimate (MLE). This can be
done iteratively through a variant of the Expectation-Maximization
(EM) algorithm, a standard for estimating the MLE in la-
tent variable models. The E-step estimates the posterior
contribution of the latent variable k:

p(t)(ki|f, t) =
p(ki)p(f |ki)p(t|ki)∑N
j p(kj)p(f |kj)p(t|kj)

(2)

The M-step then re-estimates the marginals using the pos-
terior distribution computed in the E-step:

p(t+1)(ki) =
∑
f,t

(
p(t)(ki|f, t)

p(f, t)∑
f,t p(f, t)

)
(3)

p(t+1)(f |ki) =

∑
t p

(t)(ki|f, t)p(f, t)
p(t)(ki)

(4)

p(t+1)(t|ki) =

∑
f p

(t)(ki|f, t)p(f, t)
p(t)(ki)

(5)

One can employ a fixed number of EM iterations and assume
convergence, however a least-squares or KL-divergence fit
can be used to approximate the change in performance across
iterations. When the change drops below a threshold, then
we assume convergence.

3.1.2 Model Selection

One drawback with the basic PLCA model is the number
of components describing a distribution must be known a
priori. We therefore incorporate model selection, a com-
monly employed information theoretic approach to deter-
mining parameters of a model. In the case of PLCA, the
model parameters are described by N , the number of com-
ponents. To appropriately determine the correct value for
N , we use Bayesian Information Criterion (BIC) model
selection. Using the log-likelihood of the optimized param-
eters, an additional parameter which penalizes model com-
plexity is subtracted from the log-likelihood:

ln p(X) ' ln p(D|θMAP)−
1

2
M lnN (6)

where M is the number of parameters in θ and N is the
number of data points. BIC ensures that we do not let the
model overfit to a large value of N , while still producing a
suitable log likelihood explanation of the observed data.

To begin the model selection, we iterate through every
slice of audio. Using model selection, we compare the results
of using the current number of components and using an
additional component. If the results are better explained
with an additional component, we add one to the value of
N and continue to the next slice. Iteratively running PLCA
across all slices on increasing values of N until finding the
maximum BIC results in finding N = 45 for 10 hours of
audio.

3.2 MFCC Model
For our second model, we use the commonly employed Mel-
frequency Cepstral Coefficients (MFCCs) which approxi-
mates a frequency spectrum by a set of de-correlated fea-
tures. For completeness sake, we summarize the basic algo-
rithm of computing MFCCs below:

1. Window the input audio signal and take the discrete
Fourier transform

2. Warp the absolute power spectrum into M triangular
sub-bands, spaced equally on the Mel-frequency scale
with 50% overlap. The following approximate formula
describes a frequency on the Mel-frequency scale given
an input linear frequency:

mel(f) = 2595 ∗ log10 1 +
f

700
(7)

Using this mapping, warp the power spectrum to the
Mel-scale and compute the energy in each sub-band
as follows:

Sm = log

(
N−1∑
k=0

|X[k]|2Hm[k]

)
(8)

where Hm are the filter-banks described by the Mel-
frequency scale.

3. Finally, we compute the discrete cosine transform to
obtain the first C MFCCs:

cn =

√
2

M

M∑
m=1

(Sm × cos [n(m− 1

2
)]
π

M
(9)

and n = 1, ..., C, where C is the number of coefficients
to return (discarding high-frequency coefficients), and
M is the number of triangular sub-bands.

For our purposes, we use a standard decomposition of
M = 40 triangular bands and keep C = 13 coefficients.

3.3 Multi-dimensional Scaling
After running each model, we are left with an M × N di-
mensional matrix, where M refers to the number of time
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slices, and N to the number of dimensions that describe
each feature. In the case of PLCA, after running model
selection, we are left with N = 45 dimensions describing
the data. With regards to MFCCs, we specifically choose
N = 13 cepstral coefficients.

In order to visualize the high-dimensional space created
by either model and cluster together similarly weighted fea-
tures, we make use of Multi-Dimensional Scaling (MDS),
a popular technique for multivariate and exploratory data
analysis. MDS is a common technique for projecting data in
high-dimensional spaces to 2 or 3 dimensional spaces for the
purposes of visualization. It aims to preserve the pairwise
distances between data points, starting with the notion of
distance, and working backwards in order to create the co-
ordinate space. The basic algorithm for calculating the un-
known low-dimensional coordinate map X thus starts with
a distance or proximity matrix, P. We aimed to use the full
archive of 72,000 slices, however creating a matrix of float
values this large requires 20 gigabytes of information which
must be held in RAM. Therefore, we reduce our database
by taking every 5th slice, effectively looking at 0.5 second
slices every 2.5 seconds rather than every 0.5 seconds. How-
ever, the description of the data in the case of PLCA is still
dependent on all 72,000 slices.

In order to calculate the low-dimensional coordinate ma-
trix, we calculate the largest eigenvalues of the distance ma-
trix after applying a double centering procedure. The basic
MDS algorithm is summarized as follows:

1. Compute a M ×M proximity matrix P by calculat-
ing the Euclidean distances between each of the M
features

2. Compute the inner product matrix B by applying
double-centring to the proximity matrix P:

B = −1

2
JP(2)J (10)

where J = I−n−111T and n is the number of objects.
3. Compute the eigenvalue decomposition and retain the
n largest eigenvectors, e1, ..., en in order to compute
the n-dimensional coordinate matrix X:

X = EnΛ
1
2
n (11)

using the eigenvectors E and eigenvalues Λ of B

One may also notice the algorithm is equivalent to a
doubly-centered version of PCA in the case where the dis-
tances are Euclidean. As both the PLCA and MFCC model’s
feature dimensions are de-correlated, we would expect to
find the number of eigenvalues approach the same dimen-
sionality as either model. Thus, the PLCA model is clus-
tered in 45 dimensions, and the MFCC model in 13.

4. BROWSER
The interface is shown in Figure 4 and is built in C/C++ us-
ing the creative-coding toolkit openFrameworks2. The user
is presented with a 3D space (see Figure 4) where each slice
of sound from the archive is represented as a cube projected
in 3D space. The coordinates of the cube are determined
by which dimensions of the MDS coordinate matrix are se-
lected. To begin, the first three dimensions are displayed.
Users can then select any dimension to be displayed on the
3-axes. As a result, the visualization can also be constrained
to a 2D visualization by simply choosing the same dimen-
sion for 2 axes. A colormap is used to help depict distance
from the OpenGL origin (using a “jet” colormap, i.e.: blue-
yellow-red), though the user can turn this off. Figures 2

2http://www.openframeworks.cc

and 3 depict the visualizations of the first three dimensions
produced using MDS inside the browser.

While inside the browser, pressing space-bar allows one
to annotate the currently selected slice. The annotated
text appears in 3D next to the slice’s cube. The slice’s
audio is also visualized as a waveform and its instantaneous
Fourier transform. As we used the first ten minutes of every
tape-reel, the waveform for any given slice is presented as a
looped region within a 10 minute audio file. However, the
user can change the loop regions to hear any other portion
of the original audio file while selecting a slice, thus allowing
the user to listen to the audio before and after the slice.

The user can also move the camera around the OpenGL
origin by dragging the left mouse button in the 3D space.
Highlighting any of the cubes with the mouse allows the
user to inspect the clip in greater detail. Taking a cue from
the 2D analog CataRT, any of the cubes can be “scrubbed”
for playback by simply moving the mouse over any of the
cubes, not requiring any further interaction to listen to the
sound sample. Zooming in and out of the 3D space can be
done via the mouse scroll wheel or graphical slider. Double-
clicking on any of the cubes re-centers the origin to the
selected cube, allowing camera interaction to occur with re-
spect to the cube. Cubes can be spaced closer or farther
from each other using another graphical slider. This allows
more tightly clustered portions of a visualization to be ex-
plored in greater detail.

5. USER FEEDBACK
Three researchers of the Oram Archive were invited to nav-
igate the browser and spent 1 hour in total using both the
PLCA and MFCC visualizations. They were unaware of
how either model was created, were unfamiliar with signal
processing and machine learning, and were only told that we
are investigating a way to navigate the Oram Archive. Each
user was given 5-10 minutes of explanation of the features
of the browser and were then left to explore the browser by
themselves. Each user proceeded to explore the archive by
using the mouse to listen to the different slices located in 3D
space. In addition, each user managed to find particularities
of the archive that seemingly would have been very difficult
without the browser. For instance, finding a significant por-
tion of one tape reel that was labeled as “POP TRY-OUTS”
in another reel labeled as “COPY DONKEY HELL ABC &
ITV. BIRDS & PERC”by exploring slices located near each
other in the 3D space. Also, one found components relating
to Daphne Oram’s piece, “Birds of Parallax” during lectures
series that were only labeled by their location, indicating she
demonstrated these components during her talk.

When asked to compare the two visualizations and re-
mark on their usability as a navigation tool of the Daphne
Oram Archive, the three researchers reported on the form
of the MFCC model in comparison to the PLCA one, saying
(1), “it has a less useful shape in general”, (2) “it has less de-
tail”, and (3) “this dense mass represents total variety...and
I don’t quite understand how it is mapped.” In response, we
asked what if anything made the PLCA model more useful
for navigation in comparison to the MFCC model. User 1
reported: “it has a more definite and understandable space.
For example, prongs that have specific information in them
such as silence.” and User 3 reported: “Oh that’s really suc-
cessful, it seems to be matching pitch and you start to see
how she was using pitch” and “I had a clear sense of how it
was mapped”.

Each user also gave many helpful possible extensions to
the current functionality of the browser, including the abil-
ity to save camera states, only view a particular reel’s slices,
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Figure 1: Screenshot depicting the GUI of the browser (best viewed in color). Here a user is currently
inputing text in order to annotate one of the sound segments. We can see sliders to the left allowing the
user to zoom in/out, change the dimensions of the visualization, and control which elements are drawn
on screen. With all of the options being drawn, we see the waveform of the currently highlighted sound
(depicted with a white cube under the mouse cursor) is drawn on the bottom. As well, the meta-data
describing the file name is just below the waveform. To the right, the decibel-scale spectrum is also drawn.
All elements are drawn in real-time and are interactively manipulated in 3D space.

and auto-zoom and rotation around a particular point. User
1 found the 3D nature of the visualization required more
practice saying they “might get used to it” while User 3
commented on navigating around a single slice saying “I
understand it as a structure, but I’m working out where in
3D space [the slice] is. You have to move around in 3D be-
fore working it out.” User 3 also expressed the scope of the
browser for new users to see and appreciate Daphne Oram’s
work, remarking, “Goes to show just how much variety there
are in the samples, and this has made that variety accessi-
ble.”

User 2 additionally remarked on the potential of incor-
porating other mediums of Daphne’s work saying it would
be great to “include other mediums than audio, combining
with video/letters/images.” As well, both User 2 and User 3
commented on the tool’s applicability to performance and
composition, saying he/she was “fascinated as a composi-
tional tool. Navigating different dimensions, it’s a beautiful
instrument” and “it is nice to categorize sounds as it is what
we do in sampling”.

6. DISCUSSION AND FUTURE WORK
Each researcher had prior knowledge of many aspects of
the Archive and Daphne Oram’s composition techniques,
and were also familiar with many of the recordings. Their
interests in the archive stemmed from her methods in com-
position to the actual electronics of the Oramics Machine.
When given the chance to navigate the archive in a 3D
space arranged by acoustic similarity, each user was in-
credibly pleased by the possibilities and results of just one
hour’s navigating, and also preferred the PLCA model to
the MFCC one generally for 3 reasons: (1) the visual form
and structure of the PLCA model was easier to navigate,
as knowing where one was in 3D space is easier to notice,
(2), navigating within the ”glob-like” mass of the MFCC

Figure 2: Screenshot of the first 3 dimensions of the
PLCA model visualized in the browser. We show
three different views here.
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Figure 3: Screenshots of different camera views of
the first 3 dimensions of the MFCC model visualized
in the browser. We show three different views here.

representation in 3D required users to go inside the sphere,
making interaction very difficult, and (3), the mapping and
clustering in the PLCA model appeared more intuitive, with
users reporting they understood how it was mapped and the
similarity of sounds along a projection seemed to cluster
sounds better.

Regarding (1) and (2), the form of the PLCA model (see
Figure 2) is a result of the probabilistic nature of the com-
ponent weights needing to sum to 1. In 3D space, this
space is defined by a 3-simplex or tetrahedron. In com-
parison, MFCCs may have energy explained in all bands
as there is no normalization procedure. Plotting the first
three dimensions of the MFCC model thus produces simi-
lar distributions of energy in all dimensions, creating what
users called both a “glob like” and “blob like” sphere (see
Figure 3). Navigating inside and around a sphere presents
unique challenges for a 3D browser, namely, it is difficult
to select elements within the sphere and understanding the
orientation of the sphere is difficult as there are no identi-
fying features. Thus, exploring visualizations in 3D seems
to require landmarks for useful navigation. In regards to
point (3), this may be due to the greater classification and
recognition performance of PLCA over MFCCs (left out for
blind-review).

Further work should focus on issues with navigating in
3D space, as some users reported on the 3D nature as re-
quiring practice to navigate. One solution may be to cre-
ate more intuitive control through the use of other input
and display devices such as touch-screens. As well, simi-
lar latent-analysis techniques may be applied for additional
meta-data from the archive as is done in audiovisual and
text corpora, e.g. [8, 5], to create more informed visualiza-
tions. In this case, the input of text annotations as well can
create a user-guided visualization, where feedback from the
user reshapes the 3D visualization.
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