
A Gesture Control Interface for a Wave Field Synthesis
System

Wolfgang Fohl
HAW Hamburg
Berliner Tor 7

20099 Hamburg, Germany
fohl@informatik.haw-hamburg.de

Malte Nogalski
HAW Hamburg
Berliner Tor 7

20099 Hamburg, Germany
malte.nogalski@haw-hamburg.de

ABSTRACT
This paper presents the design and implementation of a ges-
ture control interface for a wave field synthesis system. The
user’s motion is tracked by an IR-camera-based tracking
system. The developed connecting software processes the
tracker data to modify the positions of the virtual sound
sources of the wave field synthesis system. Due to the mod-
ular design of the software, the triggered actions of the ges-
tures may easily be modified. Three elementary gestures
were designed and implemented: Select / deselect, circular
movement and radial movement. The gestures are easy to
execute and allow a robust detection. The guidelines for
gesture design and detection are presented, and the user
experiences are discussed.

Keywords
Wave field synthesis, gesture control

1. INTRODUCTION
For immersive virtual reality systems, there is a need for di-
rect and natural interaction. One of these interaction types
is gesture control. This has been the initial motivation to
develop a gesture control interface for the control of move-
ment of virtual sources in the wave field synthesis (WFS)
system, that the authors are operating. The lab is equipped
with a camera-based tracking system (A.R.T.), that permits
the tracking of marker positions with a tracking rate of max.
60 Hz and spatial resolution of 0.4mm, which is used for the
realization of a gesture control interface [1].

1.1 Goals
The primary goal of the work presented in this paper has
been to develop a software for interfacing the WFS system
with external tracking systems to provide gesture control
of the WFS system. To this end, a set of elementary geo-
metrical data transformations between tracking and WFS
systems had to be developed. The resulting interface soft-
ware should be modular and flexible so that it could be
easily adapted to other tracking systems and also enables
the definition of different gesture sets. Finally, a set of easy-
to-apply gestures should be developed to move the positions
of virtual sound sources. The gestures trigger the transmis-
sion of Open Sound Control (OSC) messages to the WFS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

system, that finally modifies the source positions.

1.2 Background and Related Work
1.2.1 Wave Field Synthesis

A wave field synthesis system creates the two-dimensional
representation of the sound field of a virtual source by ex-
ploiting Huygens’ Principle which states, that the sound
field of a point source can as well be generated by oscilla-
tors located along the wave front of the source. A modified
version of Huygens’ principle applies for linear speaker ar-
rays. Here a delayed version of the source sound signal is
fed to the speakers. The delay ∆ti of speaker i is the time a
sound wave with velocity c would need to pass the distance
di from the source to speaker i:

∆ti =
di
c

(1)

A very detailed description of wave field synthesis funda-
mentals, applications, and rendering software is given in the
PhD thesis of Marije Baalman [2]. A shorter overview on
WFS principles and spatialisation techniques can be found
in the article of Corteel and Caulkins [5].

1.2.2 Gesture Control Approaches in Wave Field Syn-
thesis, Music Production and Performance

Gesture control of WFS systems has gained some attention
and is covered in several papers. Gestures are either used
for the production of audio material or for live performances
in an virtual audio environment. Bredies et al. describe a
multitouch table to manipulate sound sources [3], Melchior,
Laubach, and de Vries developed a virtual reality authoring
tool [10]. In the Grainstick project by Leslie et al. [9], a 3D
IR tracker is combined with a Wiimote to manipulate sound
sources and trigger various sounds during the performance.
A similar setup is used by Caramiaux et al. to create an
“extended virtual musical instrument” [4].

1.3 Paper Outline
In the next section an overview of the WFS system hardware
and software components as well as the system architec-
ture is given. Then the repertoire of gestures is presented.
After that, the design and implementation details of the
gesture control interface is described and the used libraries
and frameworks are mentioned. The article closes with a
discussion of the results and a preview on future work.

2. SYSTEM DESCRIPTION
Our WFS system is designed and developed by FourAudio1.
It consists of a rectangular assembly of linear speaker arrays.
The array is made up of modules, each module containing
8 tweeters and 2 woofers. There is a total of 56 speakers

1Four Audio homepage: http://www.fouraudio.com

�3�4�1

on the long sides of the rectangle, and 48 speakers on the
short sides, resulting in 208 channels. Each channel has to
be supplied with its individual audio signal. The rendering,
i.e. the application of the necessary time delays to the au-
dio signals of the up to 64 virtual sources is performed by
a distributed system of 3 Linux PCs and an Mac frontend
computer. The computers are connected by two Ethernet
networks, one for passing the necessary control and coordi-
nation messages by OSC messages, the other network con-
nects the speaker modules and the rendering computers by
an proprietary audio network (Dante by Audinate2). De-
tails about the network architecture are given below.

A detailed system description can be found in a recently
published article [6].

Figure 1 gives an overview over the system structure and
the distribution of the software components. The audio pro-
cessing system consists of one Linux PC as the WFS control
server and two Linux PCs as WFS rendering nodes, and a
Mac PC as frontend computer, where the gesture control
software is running, and where DAW software like Ardour
or Cubase is providing the audio streams for the system. On
the Mac, the software audio interconnections between the
applications is established by the low-latency audio server
JACK3. The external audio connections between the front-
end computer, the rendering nodes, and the loudspeaker
channels are made with the Dante audio network by Aud-
inate, an audio-over-Ethernet solution, that minimizes the
necessary wiring of the system and provides flexible signal
routing. The overall system engineering and the design of
the speaker cabinets was done by Four Audio.

Frontend Computer

WFS Control Server

WFS Rendering Nodes

Tracker UDP Messages
via WLAN

Ardour / Audio Software Tracker-OSC-Interface
Gesture Control xWonder / OSC Software

tWonder1 tWonder2 tWonder3 tWonder...

cWonder

S P E A K E R S

OSC

OSCOSCOSC OSC

OSC

Dante Dante Dante Dante

Dante Dante Dante Dante

Figure 1: Structure of the WFS system [7]

The software for WFS rendering is called wonder. It is
being developed at the TU Berlin in the department of au-
dio communication4, and is licensed under the GPL. It is
a distributed software system consisting of the components
cwonder (the controller and coordinator), running on the
WFS control server, and the component twonder, which
applies the proper time delays to the loudspeaker signals,
running on the WFS rendering nodes.

The control server coordinates the work of the rendering
nodes and keeps track of the current source positions, and
provides these data to the GUI component xwonder running
on the frontend PC. The control server, the rendering nodes,
and the frontend PC are communicating via OSC (Open

2Audinate homepage: http://www.audinate.com
3Jack homepage: http://jackaudio.org
4Homepage of the department of audio communica-
tion: http://www.ak.tu-berlin.de/menue/fachgebiet_
audiokommunikation

Sound Control) network messages5. OSC messages are also
the external command interface of the system to manipulate
source properties. An OSC message to move a source has
the form: /WONDER/source/position(id, x, y, z, t, dur).
This message moves the source identified by id to position
(x,y,z). Movement starts at time t and lasts dur seconds.

Figure 2 shows the xwonder GUI.

Figure 2: The xwonder GUI to control virtual
sources

The A.R.T tracking system consists of six IR cameras
and an evaluation unit that locates the positions of markers
consisting of an unique assembly of reflecting spheres that
can be mounted to the user’s hand (see figure 3). As long
as the marker is in sight of at least two cameras, the data of
the marker position and orientation is provided via WLAN
broadcast. The transmitted data contain the position of the
origin of the hand coordinate system, as well as the rotation
matrix RRR of the hand coordinate system relative to the room
coordinate system, time stamps and marker ID.

The transformation between hand and room coordinate
systems is accomplished by equation 2:

rrrrrr = RRR · rhrhrh + prprpr (2)

where rrrrrr is a source position in room coordinates, rhrhrh is the
same position in hand coordinates, and prprpr is the position
of the origin of the hand coordinate system in room coordi-
nates.

It is worth noting, that R contains the cosines between
the unit vectors of the room and hand coordinate system:

RRR =

ux,rux,rux,r · ux,hux,hux,h ux,rux,rux,r · uy,huy,huy,h ux,rux,rux,r · uz,huz,huz,h

uy,ruy,ruy,r · ux,hux,hux,h uy,ruy,ruy,r · uy,huy,huy,h uy,ruy,ruy,r · uz,huz,huz,h

uz,ruz,ruz,r · ux,hux,hux,h uz,ruz,ruz,r · uy,huy,huy,h uz,ruz,ruz,r · uz,huz,huz,h

 (3)

Here, e.g. ux,rux,rux,r is the unit vector in x-direction of the room
coordinate system and uz,huz,huz,h is the unit vector in z-direction
of the hand coordinate system.

3. SOFTWARE ARCHITECTURE
In this section the software architecture of the tracker-OSC
interface software is described.

The purpose of this software is to capture the outputs of
the tracking system and transform it to source positioning
commands for the WFS system.

For the following explanations please refer to figure 4.
From the architectural view, the system presented here

is a framework for the interconnection of external position
data to the WFS system. The central part of the framework
is the optional components section in the center of figure 4,
where the desired system behavior is implemented.

5OSC Homepage: http://opensoundcontrol.org/

�3�4�2

yaw

pitch

roll

Figure 3: 3D-marker mounted to user’s hand for
gesture detection. The hand coordinate system is
indicated: x-axis (blue), y-axis(green), z-axis (red).
Also indicated are the rotational directions roll,
pitch, and yaw.

The main components of the software are the TrackerLis-
tener, which captures the UDP packets from the tracking
system, the Matcher, which updates the Marker data ob-
jects with the received tracking data and the optional com-
ponent section . The marker objects internally represent
the tracked real-world objects. The Matcher also creates
a mapping from Marker objects to Source objects, where
Source objects are the internal representations of the vir-
tual sources of the WFS system . Thus all desired changes
to a Source of the WFS system are to be made to the corre-
sponding Source within the tracker-OSC-interface software
and all changes made to a Source within this interface soft-
ware will result in a change to the corresponding Source of
the WFS system. Once this mapping is established, all sub-
sequent processing is made with the Source objects. Since
the hand marker (figure 3) is mapped to a Source object, it
will be visualized in the xwonder GUI. (Usually, no audio
stream is connected to the hand source.)

The source data are then passed to a ConverterBox, that
contains one or more Converters to perform the necessary
coordinate transformation from the tracker coordinate sys-
tem to a self-defined coordinate system. It follows an op-
tional processing step, where the application-specific logic
is applied, this is where the GestureComponent is located
which will be explained in the next chapter.

The GestureComponent requires the two coordinate sys-
tems of the tracker and the WFS system to fit onto each
other, since both systems occupy the same space in the real
world. For purposes different from gesture control, the ar-
chitecture would allow users to modify the configuration
of Converters during a live performance. To minimize the
coupling between the two coordinate systems and to give
programmers of additional optional components (as men-
titioned briefly in the previous paragraph) the freedom to
choose an entirely different coordinate system within their
component, a second pass through a ConverterBox is ap-
plied after the application-specific logic, thus completing
the fit of the coordinate systems. Possible Converters are:
Mirror, Scale, Offset, and Rotate.

After this second pass through a ConverterBox, the Source
objects are passed to the ModificationFactory module, where
the movement history of the sources is stored. To reduce

TrackerListener

(specific for A.R.T.
Tracker)

TrackerListener Application

WLAN
Broadcast

from
A.R.T.

Tracker

Matcher

Update
Marker Data

Assign Marker
to Source

ConverterBox

Coordinate
transformations

Offset

Scale

Mirror

Rotate

Socket

Gesture
detection

Alternate
functionality

TrackerOSCInterface

Optional
components

ConverterBox

Coordinate
transformations

ModificationFactory

Update source history

Check for thresholds

OSCAdapter

Create and
send

OSC messages

Ethernet OSC Messages
to

WFS system

Offset

Scale

Mirror

Rotate

Figure 4: Processing sequence of the Tracker-OSC
interface software

network and processing load, OSC messages are only cre-
ated, if the source movement is large enough to trigger a
perceivable change in the WFS system. Finally the OS-
CAdapter is creating the OSC messages and tansferring
them to the WFS system.

4. GESTURES
The purpose of the gestures is the movement of virtual
sound sources of the WFS system. A very basic set of
gestures is defined: Selection and deselection of a source,
circular movement around the user, and radial movement
towards and away from the user.

A robust recognition of the gestures was required with
special attention to ease of operation even for untrained
users. The gestures for source movement are to provide
a continuous control of the source position. This sort of
tasks is best accomplished by an deterministic evaluation
algorithm instead of a learning system, because of the wide
variety of possible control actions, which in a learning sys-
tem had to be learned for each desired path of movement
and for each user. This would result in an impracticable
size of the training data. So in a previous study, several
test persons were asked to simulate the tasks of selecting,
deselecting and moving sound sources, while explaining the
sound sources as realworld objects they could not see but
only hear. This was to help to lift the test persons’ atten-
tion away from the speakers or displays and towards the
virtual world around them, since the interface should allow

�3�4�3

them to interact with only what they hear. The results of
this study led to the present gesture definitions.

An additional goal was to minimize the instrumentation
requirements, so only one marker should be used to de-
tect the gestures and calculate the source movements. The
marker is mounted at the user’s hand as shown in figure 3.

A further goal for the gesture definitions was to avoid the
King Midas problem: the discrimination between gesture
and non-gesture must be intuitive to the user, and must be
easy to detect in the data processing.

The procedure of manipulating sources is illustrated in
the finite state machine in Fig. 5. The basic sequence is
to first select a source, then perform one or more move
operations on the source, then finally deselect the source.

The hand is initially in the FREE state. To select a
source, the user has to take the selecting pose as described
in the next section. When the selecting pose is detected, the
hand proceeds to the SELECTING state, and if the pose is
held for a sufficiently long time, it reaches the SELECTED
state. The purpose of the intermediate SELECTING state
is to suppress the unintended selection of sources. After
the source has been selected, one of the two possible move-
ment gestures will be detected which brings the hand to
the CMOVE state for circular movements around the hand
with a fixed distance to the hand, or to the RMOVE state
for movements towards or away from the user. When the
end of a movement is detected, i.e. the hand has not moved
for a certain time, the hand goes back to the SELECTED
state, and finally, if the selecting pose has been left, back to
the FREE state.

FREE ●

max = thold
SELECTING

SELECTED
entry / storePositions()

RMOVE
∆Hand / ∆Source

CMOVE
∆Hand / ∆Source

SelectPose ↑SelectPose ↓

timeout CMoveGesture ↑

HandStill

RMoveGesture ↑

SelectPose ↓

HandStill

SelectPose ↓

Figure 5: State diagram of the hand

The gestures and their detection will be explained in de-
tail in the following sections.

For the discussion of the hand movements, the axes of the
hand coordinate system and the rotational directions are
defined as shown in figure 3: The x-axis is pointing in the
directions of the fingers, the y-axis is pointing in the direc-
tion of the right thumb, and the z-axis is pointing upward
from the back of the hand. The rotational directions are
roll : a rotation of the hand around the x-axis, i.e. turning
the back of the hand upwards / downwards, pitch: rotation
around the y-axis, i.e. pointing to the ceiling / to the floor,
yaw : rotation around the z-axis, i.e. pointing to the left
/ right. In the following equations, the subscript h and r
denote the hand and room coordinate systems respectively.

4.1 Select / Deselect Sound Sources
To select a source, the selecting pose must be taken. The
fingers point towards the source, and the hand is raised,
i.e. the pitch angle exceeds a threshold value. In addition,
the back of the hand has to put upwards, so the roll angle
must not exceed a threshold value. This pose must persist

a certain time to avoid unintended selection, then the hand
is in the SELECTED state. The pitch and roll angles can
easily be obtained from the rotation matrix RRR:

pitch = arcsin r31 , roll = arcsin r32 (4)

When a source has been selected, the source position at se-
lection, hand position at selection, and the hand orientation
at selection are stored for the calculations of the source dis-
placement by the subsequent movement gestures. A toler-
ance rectangle of size 2∆x×2∆y is constructed in x- and y-
direction, and the next hand movement leaving this rectan-
gle decides, which action is taken next: when the yaw angle
exceeds a threshold value, a circular movement is initiated,
and if the tolerance rectangle is left in x-direction (back /
front), a radial movement is started. The gestures for these
movements are described in the following sections.

To deselect a source, the selecting pose must be left by
lowering the hand. The pitch angle must fall below a lower
threshold. There is a hysteresis between the thresholds for
selecting and deselecting, otherwise a source just selected
will be deselected by the slightest downward shake of the
hand. Deselection is executed immediately after the select-
ing pose has been left. Deselection of a source is possible at
any time during a movement and will stop the movement.

4.2 Circular Movement
When the hand moves sideways in the SELECTED state,
the hand proceeds to the CMOVE state, and a circular
movement is introduced. When entering the state, the de-
sired source positions are calculated from the distance vec-
tor shshsh from the hand to the source in hand coordinates,
which has been stored at the entry into the SELECTED
state. This vector remains constant throughout the move-
ment, so only a transformation of the source position be-
tween the hand and room coordinate systems has to be
made to calculate the new source position srsrsr in room coor-
dinates. For this transformation the hand rotation matrix
RRR and the hand translation in (room coordinates) ∆pr∆pr∆pr must
be considered:

sr,circularsr,circularsr,circular = RRR · shshsh︸ ︷︷ ︸
rotation in

room coordinates

+∆pr∆pr∆pr (5)

Since the hand translation ∆pr∆pr∆pr is considered in the cal-
culation of equation 5, no matter how the circular gesture is
performed, be it with the elbow as the centre of motion, or
by a rotation of the whole body, the result is in both cases
as expected: the source is rotating around the centre of the
gesture movement. This is even true, if the user is walking
across the room. Figure 6 illustrates the geometry of the
circular movement.

The circular movement ends, when the hand remains still
for a certain amount of time. Then the hand switches to
the SELECTED state. A slight problem arises, when the
circular movement shall be continued, because the hand has
to leave the tolerance zone which causes a small jump in the
source position, but this jump can be immediately corrected
by a subsequent hand movement. As previously stated, de-
selecting the source also ends the movement.

4.3 Radial Movement
When the hand moves in radial direction (towards or away
from the user) in the SELECTED state, it gets into the
RMOVE state, and the source begins to move with a speed
proportional to the distance between the current hand po-
sition and the hand position at selection. The direction of
source displacement in room coordinates is constant, and

�3�4�4

Ssel

sh,0sh,0sh,0 sh,0sh,0sh,0

Scmove

∆p∆p∆p

sr,cmovesr,cmovesr,cmove

Figure 6: Calculation of the source position for cir-
cular movement

Ssel

srsrsr

hrhrhr

srmove,hsrmove,hsrmove,h

Srmove

d0,rd0,rd0,r

s0,rs0,rs0,r

h0,rh0,rh0,r

∆hr,||∆hr,||∆hr,||

vrmovevrmovevrmove = c ·∆hr,||∆hr,||∆hr,||

Figure 7: Calculation of the source position for ra-
dial movement. The source moves in the direction
of the connecting line between hand and source at
the time of selection. The speed is proportional to
∆hr,||∆hr,||∆hr,||, which is the projection of the hand displace-
ment on the direction of movement.

is along the vector d0,rd0,rd0,r = s0,rs0,rs0,r − h0,rh0,rh0,r (see figure 7). The
current source position sr,radialsr,radialsr,radial is calculated according.

sr,rmovesr,rmovesr,rmove = s0,rs0,rs0,r + C ·∆hr,||∆hr,||∆hr,||/∆tOSC (6)

where ∆hr,||∆hr,||∆hr,|| is the hand displacement projected onto the
line of movement d0,rd0,rd0,r, C is a constant to adjust the source
speed, and ∆tOSC is the time since the last OSC message
has been sent to the WFS system.

For movements away from the user, the motion only stops,
when the RMOVE state is left by moving the hand to hand-
position-at-select, for movements towards the user, the mo-
tion stops, when the source reaches hand-position-at-select.
Of course, the movement also ends, when the source is de-
selected. It should be noted, that after leaving the RMOVE
state, the tolerance rectangle is not centred around the cur-
rent hand position, but stays centred around the initially
stored position hand-position-at-select. Otherwise the fine
adjustment of a source position with successive RMOVE op-
erations will exhibit a ”‘jumpy”’ behaviour, since each time
after the motion has stopped, the hand would have to be
moved for the distance ∆xh.

5. IMPLEMENTATION OF THE GESTURE
CONTROL SOFTWARE

Figure 8: Tolerance rectangle for radial movement.
Left: radial movement active, right: radial move-
ment stopped, because hand is within tolerance
rectangle, movement will be continued, when hand
leaves tolerance rectangle.

The software has been implemented in Java 1.6, it consists
of two separate applications: The TrackerListener and the
TrackerOSCInterface (see figure 4). The TrackerListener
collects the messages of the A.R.T. tracking system and
forwards them to the TrackerOSCInterface. Thus the soft-
ware can be adapted to other tracking systems by mod-
ifying only the TrackerListener application, without the
necessity to modify the code of the TrackerOSCInterface.
For capturing the WLAN-messages from the tracker, only
the java.net.DatagramPacket and java.net.DatagramSocket
core libraries were used. For the OSC message passing, the
JavaOSC library by Illposed Software [8] is used.

6. RESULTS AND DISCUSSION
The software presented in this article provides a flexible
and reliable tool to couple the 3D-tracking system with the
WFS system to create a gesture control interface for the
latter system.

To this point the gestures do not allow a user to create
or modify sounds, so a predefined sound project must be
running. The user, instead of being a musician, rather takes
on the role of a bandleader or conductor of some sort.

The software is not limited to gesture control, but al-
lows a variety of source manipulations by marker move-
ments. Only the GestureControl module in figure 4 must
be replaced with a component with different functional-
ity. An example is the SourceSourceMatcher, which allows
WFS sources to be continuously positioned in a fixed direc-
tion and distance to a marker, this creates a “virtual head-
phones” behaviour, moving two WFS sources to the left and
right side when the marker is mounted on the user’s head.

A gesture processing module enables users to select a
source, move it in circular and radial direction, and finally
deselect the source.

The preliminary user study showed great agreement of
the test persons with the execution of the select / deselect
and the circular motion gestures. For these gestures the
test persons also agree in their expectations of the resulting
actions. In the implemented system, these gestures were
executed by the users without problems.

For the radial motion gestures, the test persons showed
greater variance in how to execute the gesture and in the
expectation of the resulting action. For the definition of
the radial motion gesture, a velocity-based control has been
implemented to enable the user to easily displace the source
over great distances. In the implemented system, users oc-
casionally experienced problems controlling radial motion,
especially when pulling the source nearer. To some extent,
the problems are due to the fact, that the acoustical per-
ception of the source position in radial direction is quite
difficult. These difficulties even increase, when the source

�3�4�5

approaches too near at a too high speed. Also, users oc-
casionally move too far away from the position, where the
gesture started, which leads to unintended source motions.
Different modifications of the radial movement will have to
be implemented and tested, e.g. reducing the speed of ap-
proach with decreasing distance of the source to the user.

To actually implement the gesture controlling software,
tedious work had to be done to fine-tune the tolerance and
threshold values for interpreting hand movements as ges-
tures. Finally, a compromise has been found between ac-
cepting different styles of the users to perform the gestures,
and the suppression of unwanted actions, due to incident
movements that erroneously are being interpreted as ges-
tures by the system.

So with exception of some minor issues with the radial
motion gestures, the project goals were reached.

6.1 Future Work
After having learned important lessons on defining and de-
tecting gestures and their triggered actions, the next step
will be to expand the repertoire of gestures and to develop
different alternatives to the current approach to the radial
movement of the sources, and to create a musically mean-
ingful project to gather experiences with the gesture control
system at real musical performances.

Also the whole concept of non-acoustic feedback has not
yet been considered. Next approaches would consider hap-
tic feedbacks onto the hand used for the gesture, with the
aim not to increase the abstraction level too much while
increasing the intuitiveness when working with the system.
Transforming low frequencies of the sound emitted by a se-
lected source to vibrations onto the hand might even help
to feel which source is selected, if two sources are very close
to each other.

7. REFERENCES
[1] A.R.T. ARTTRACK user dokumentation.

http://www.ar-tracking.com/products/tracking-
systems/arttrack-system/, accessed
2013-02-10.

[2] M. A. Baalman. On Wave Field Synthesis and
electro-acoustic music, with a particular focus on the
reproduction of arbitrarily shaped sound sources. PhD
thesis, TU Berlin, 2008.

[3] K. Bredies, N. A. Mann, J. Ahrens, M. Geier,
S. Spors, and M. Nischt. The multi-touch SoundScape
renderer. In Proceedings of the working conference on
Advanced visual interfaces, AVI ’08, page 466–469,
New York, NY, USA, 2008. ACM.

[4] B. Caramiaux, S. F. Alaoui, T. Bouchara,
G. Parseihian, and M. Rébillat. Gestural auditory and
visual interactive platform. In Proceedings of the 14th
International Conference on Digital Audio Effects
(DAFx-11), Sept. 2011.

[5] E. Corteel and T. Caulkins. Sound Scene Creation
and Manipulation using Wave Field Synthesis.
Technical report, IRCAM, Paris, Paris, 2004.

[6] W. Fohl. The wave field synthesis lab at the HAW
Hamburg. In R. Bader, editor, Sound - Perception -
Performance, volume 1 of Current Research in
Systematic Musicology. Springer, 2013 (in print).

[7] FourAudio. WFS System Manual, 2011.

[8] Illposed Software. Java OSC.
http://www.illposed.com/software/javaosc.html,
accessed 2013-02-09.

[9] G. Leslie, B. Zamborlin, P. Jodlowski, and N. Schnell.
Grainstick: A collaborative, interactive sound

installation. In Proceedings of the International
Computer Music Conference (ICMC), 2010.

[10] F. Melchior, T. Laubach, and D. de Vries. Authoring
and user interaction for the production of wave field
synthesis content in an augmented reality system. In
Mixed and Augmented Reality, 2005. Proceedings.
Fourth IEEE and ACM International Symposium on,
page 48–51, 2005.

�3�4�6

