
Microphone as Sensor in Mobile Phone Performance

Ananya Misra
Computer Science, Princeton

University
35 Olden St.

Princeton, NJ 08540
amisra@cs.princeton.edu

Georg Essl
Deutsche Telekom

Laboratories, TU-Berlin
Ernst-Reuter Platz 7

Berlin, Germany 10587
georg.essl@telekom.de

Michael Rohs
Deutsche Telekom

Laboratories, TU-Berlin
Ernst-Reuter Platz 7

Berlin, Germany 10587
michael.rohs@telekom.de

ABSTRACT
Many mobile devices, specifically mobile phones, come equip-
ped with a microphone. Microphones are high-fidelity sen-
sors that can pick up sounds relating to a range of physi-
cal phenomena. Using simple feature extraction methods,
parameters can be found that sensibly map to synthesis al-
gorithms to allow expressive and interactive performance.
For example blowing noise can be used as a wind instru-
ment excitation source. Also other types of interactions
can be detected via microphones, such as striking. Hence
the microphone, in addition to allowing literal recording,
serves as an additional source of input to the developing
field of mobile phone performance.

Keywords
mobile music making, microphone, mobile-stk

1. INTRODUCTION
Many mobile devices come with the intrinsic ability to

generate sound and hence suggest their use as musical in-
struments. Hence there has been an increasing interest to
find ways to make interactive music performance possible
with these devices.

An important step in this process is the discovery of ex-
pressive ways to interact with mobile devices. In recent
years, optical sensing, keys, touch-pads and various motion
and location sensors have been explored for this purpose.

In this work we consider the built-in microphone of mo-
bile phones as a generic sensor to be used for mobile per-
formance. One reason for using microphones is that they
are integral to any mobile phone, no matter how basic. It
seems natural to integrate microphones into mobile phone
performance as well.

To this end we implemented stand-alone recording (half-
duplex) as well as simultaneous recording and playback
(full-duplex) for MobileSTK for Symbian OS mobile de-
vices [4] . Using this implementation we explore ways to
use the microphone away from the traditional use of direct
recording. Instead we want to use it as a generic sensor to
drive sound synthesis algorithms in expressive ways. We
discuss a few basic parameter detection methods to extract
and give abstract representations to the microphone signal.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME08, Genova, Italy
Copyright 2008 Copyright remains with the author(s).

These parameters are then used to drive the various forms
of parametric synthesis. We believe that the microphone of
mobile devices is a useful addition to the palette of sensory
interactions for musical expression.

In recent years there has been intensified work to create
sensor based interaction and parametric playback on mobile
devices. Tanaka presented an accelerometer based custom-
made augmented PDA that could control streaming audio
[14] and ShaMus uses both accelerometers and magnetome-
ters to allow varied interaction types [5]. Geiger designed
a touch-screen based interaction paradigm with integrated
synthesis on the mobile device using a port of Pure Data
(PD) for Linux-enabled portal devices like iPaqs [8, 7]. Ca-
Mus uses the camera of mobile camera phones for tracking
visual references and motion data is then sent to an exter-
nal computer for sound generation [12]. Various GPS based
interactions have also been proposed [13, 15]. A review of
the general community was recently presented by Gaye and
co-workers [6].

The microphone-signal as a generic sensor signal has been
used previously in the design of various new musical instru-
ments. For example, PebbleBox uses a microphone to pick
up collision sounds between coarse objects like stones while
CrumbleBag picks up sounds from brittle material to con-
trol granular synthesis [11]. Scrubber uses the microphones
to pick up friction sounds and sense motion direction [3].
Live audio based sound manipulation based on microphone
pickup is a known concept. It has for instance been used
by Jehan, Machover and coworkers[9, 10]. The audio was
driven by an ensemble mix of traditional acoustical musical
instruments. Microphones are also used for control in non-
musical settings. For example, they can be used to derive
position via microphone arrays [2].

2. TURNING MICROPHONES INTO SEN-
SORS

A goal of the project is the broad accessibility of micro-
phone recording for engineers and musicians interested in
mobile phone performance. Hence it was natural to consider
extension of MobileSTK to include microphone recording.
For this, it was necessary to recover the audio recording ca-
pability which already existed in the original STK [1] for
Symbian OS, make it accessible in the MobileSTK context
and offer examples of use of the capability. MobileSTK pro-
vides a range of digital filters and synthesis algorithms in
C++ and the capability to interact with and play sound.
Mobile Operating Systems are still in a process of matura-
tion, which adds some complications to the development of
applications for this platform.

The complete architecture can be seen in Figure 1. The
core to make this possible is allowing recording audio from
the microphone. Then the microphone data is processed.
The processed data can either be used directly as output or

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

185

as input for parametric synthesis algorithms - in our case
instruments and unit generators of STK. Aside from the
audio signal, also other sensor data can be used to derive
control parameters. The next sections describe the details
of each part of this architecture.

2.1 Recording under Symbian
Recording has been implemented for Series 60, 3rd edition

devices running version 9.1 of Symbian OS1. The record-
ing class needs a CMdaAudioInputStream object for real-
time audio input streaming, and must implement the MMda-
AudioInputStreamCallback interface. This interface in-
cludes methods that are called when the input stream has
been opened or closed, and when a buffer of samples has
been copied from the recording hardware. Reading the next
buffer of input audio from the hardware starts with a call
to the ReadL() function of CMdaAudioInputStream.

With this framework, half-duplex audio works simply by
ensuring that only one of the two audio streams—input or
output—is open at any time. Full-duplex audio succeeds
if the output stream has been opened and is in use before
the input stream is started. Experiments with the Nokia
5500 Sport phone yielded a delay of up to half a second
between audio recording and playback in full-duplex mode
within MobileSTK. It is also worth noting that the au-
dio input buffer size is fixed for each phone. The Nokia
5500 Sport and Nokia 3250 use audio input buffers of 1600
samples. Other Nokia S60 3rd edition phones use 4096-
sample buffers, while S60 2nd edition phones use 320-sample
buffers. The buffer size may further differ for other mobile
phone models.

S60 2nd edition phones such as the Nokia 6630 use a
different full-duplex framework. Both the recording and
playback classes implement the MDevSoundObserver inter-
face, which includes methods called when an audio buffer
needs to be read or written. Both also have a CMMFDevSound
object. The recording and playback classes are run on dif-
ferent threads, and audio is passed between the two via a
shared buffer. As the older phones tend to have much less
processing power, we focus on S60 3rd edition phones here.

2.2 Additions to MobileSTK
Microphone input has been integrated into MobileSTK

via a new MicWvIn class, which inherits from the WvIn class
already in STK. MicWvIn acts as the interface between the
microphone and the rest of MobileSTK. As required, it
implements the MMdaAudioInputStreamCallback interface
and contains a CMdaAudioInputStream object. In addition,
it holds two audio buffers. The CMdaAudioInputStream ob-
ject copies input samples from the recording hardware into
the first of these buffers. Samples from the first buffer are
then copied into the second and typically larger internal
buffer, to be stored until they are sought elsewhere in Mo-
bileSTK.

The interface provided by MicWvIn includes the following
methods:

• OpenMic() : Opens the audio input stream and starts
recording. The buffer sizes and input/output modes
can be set via this method.

• CloseMic() : Closes the audio input stream.

• tick() : Returns the next sample of audio, as read
from the internal storage buffer. This is inherited from
WvIn along with other ticking methods.

1Resources on Audio programming for SymbianOS in C++
can be found at http://www.forum.nokia.com/main/
resources/technologies/symbian/documentation/
multimedia.html

Synthesized
audio
signal

Control
parameters

or input

1
2

3

4
5

6

7
8

9

*
0

#

Digital
signal

processing
blocks

STK
unit

generators

Mobile phone

Microphone Speaker

Camera,
accelerometer,
other sensors

Microphone
input

Processed
audio signal

Figure 1: Processing pipeline: Audio received by
the microphone passes through digital signal pro-
cessing units. The output of these can be sent di-
rectly to the speaker for playback, or act as control
parameters or input to STK unit generators.

• Rewind() : Resets output index to 0 so that tick()
starts returning samples from the beginning of the in-
ternal storage buffer.

With this framework, using microphone input within Mo-
bileSTK involves creating a MicWvIn object and calling Open-
Mic(). Individual samples from the microphone can then
be obtained via tick() and directed into a playback buffer
or as input into processing and synthesis modules. A new
version of MobileSTK, which contains these additions, is
already available under an open software license.2

2.3 Deriving control parameters from audio
signals

Audio signals are very rich in nature. They often contain
more information than is needed to identify certain physical
parameters. For example, loudness of an impact sound is
a good correlate of the impact strength, while spectral in-
formation contains cues about the impact position [17, 16].
Separating these parameters and removing fine detail that
does not influence the desired control is an important step
in using the microphone as an abstracted sensor.

In many of our usage examples we are indeed not inter-
ested in the content of the audio signal per se, but these
more general physical properties that lead to the audio sig-
nal. So a form of signal processing is necessary, which one
can think of as a simple version of feature extraction. Some
relevant methods to do this for impact sounds (detecting
impact moment, impact strength and estimates of spectral
content) have already been proposed in a slightly different
context [11]. Similarly [3] describes separation of amplitude
and spectral content for sustained friction sounds. We im-
plemented the onset detection method from [11] to allow
impact detection.

Another relevant and interesting use of the microphone
is as virtual mouthpiece of wind instruments. We take the
heuristic assumption that audio signal amplitude is a good
indicator of blow pressure; hence, arriving at an abstracted
pressure measurement means keeping a windowed-average
amplitude of the incoming wave-form. This value is then
rescaled to match the expected values for a physical model
of a mouth piece as can be found in STK [4].
2MobileSTK can be downloaded at http://sourceforge.
net/projects/mobilestk

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

186

2.4 Mobile phone camera as tone-hole
A tone-hole in a conventional instrument is a hole that

is covered or uncovered to control the produced sound. To
allow tone-hole-like behavior, we read information from the
mobile phone camera. We let the camera lens act as a tone-
hole by computing the average grayscale value of the camera
input image. When this value drops below a threshold, we
estimate that the camera lens (or metaphorically, the tone-
hole) is covered. We can also estimate degrees of covering
by setting several different thresholds.

While this technique has drawbacks when used against
a completely dark background, it succeeds in most nor-
mal, reasonably bright surroundings. It also sets the stage
for further ways for camera and microphone information to
complement each other in creating a unified expressive mu-
sical instrument. For example, more dynamic input like the
strumming gesture of guitar-plucking can be sensed by the
camera and combined with microphone input.

3. EXAMPLES
We now present a number of examples using the micro-

phone as a sensor in MobileSTK. Many of these are experi-
ments rather than full-blown instruments, meant to demon-
strate some possibilities and encourage further exploration.
Some examples use the camera as an additional sensor to
augment the instrument. Due to the limited processing
power of current mobile phones, most of the examples use
simple unit generators such as sine waves or a plucked-string
model. But as processing power grows, they can easily be
extended to control more sophisticated unit generators.

3.1 Blowing
A simple breath-controlled instrument is the Sine-Wave-

Whistle. The whistle tone is constructed from two sine
waves at slightly different frequencies, producing a beat.
When someone blows near the microphone so that the mi-
crophone input’s windowed-average amplitude is above a
threshold, the whistle tone is heard; otherwise, there is si-
lence. While the tone is heard, the precise value of the
microphone amplitude controls either the relative gains of
the two sine waves or the beat frequency. Given more pro-
cessing power, this paradigm can expressively control other
wind instruments such as saxophone, flute, and blow bot-
tle, with the precise amplitude value mapped to vibrato
frequency or gain, breath pressure, or other parameters.

Breath-controlled instruments using both microphone and
camera include the Press-to-Play, where covering the cam-
era lens produces a tone and uncovering it results in silence.
Meanwhile, the microphone determines the pitch of the tone
via a continuous mapping between the average amplitude of
the microphone input and the frequency of the sine tone. It
is also feasible, with better processing capability, to extract
the pitch of the microphone input and apply the same pitch
directly to the synthesized tone.

Alternatively, in the Mini-Flute, another microphone and
camera instrument, covering the camera lens lowers the
pitch of the synthesized tone by a small amount. In this
case, the tone is played at the amplitude of the microphone
input. Thus, blowing harder produces a louder sound, while
covering or uncovering the tone-hole modifies the pitch.
Hence the camera serves the function of the slider of a slider-
flute or of a pitch bend wheel.

3.2 Striking
The ability to identify impact sounds in the microphone

input allows the mobile phone to become a tapping or (gen-
tly) striking device. In one example, we pass the micro-

phone input through a simple onset detector and play a
sound file from memory each time it detects an onset. The
file played contains either hi-hat samples or a more pitched
sound. The value of the input signal’s amplitude envelope
at the time of onset detection, relative to its value at the
previous onset, determines which file is played. Thus if the
input grows louder from one onset to the next, we hear
the hi-hat, while the pitched sound is played if it becomes
softer.

This simple example can be extended in various ways.
For instance, which audio is played, and how, could be de-
termined by other features of the microphone input or by
information from other sensors. It would be feasible to in-
clude several more drum samples and create a mini drum
kit. The onset detection could also control other unit gen-
erators. However, the perceptible delay between cause and
effect in full-duplex mode may prove more challenging to
the striking paradigm than to other interaction models.

3.3 Other full-duplex instruments
Some examples do not readily match an existing interac-

tion model, but provide a well-defined way for the mobile
phone to respond to any sound from the user or the en-
vironment. One such instrument, the Warbler, maps the
windowed-average input amplitude to a frequency quan-
tized to a musical scale. This determines the frequency of
a constantly playing sine tone. Thus, the sine tone’s pitch
changes whenever the microphone input varies beyond a
small range. As the loudness of the microphone signal in-
creases, the sine tone plays at higher frequencies. If the mi-
crophone signal is more perturbed, switching often between
loud and soft, the sine tone similarly switches between high
and low frequencies within the specified musical scale.

A similar instrument, the Plucked-Warbler, uses a plucked-
string model instead of a sine wave. It maps the microphone
amplitude to a quantized frequency for the plucked-string,
and excites (plucks) the string only when this frequency
changes. Thus, the density of plucks reflects the stability of
the microphone input, and by extension, the surrounding
audio environment.

We have also applied the amplitude of the microphone
input to pure noise, to hear only the amplitude envelope
of the original signal. Another instrument counts the zero
crossings in a lowpass-filtered version of the microphone in-
put to estimate its pitch. It then excites a plucked-string
at a corresponding frequency once the input signal’s am-
plitude envelope has decreased after a temporary high (to
minimize pitch confusion at a note onset). Zero crossing
offers a rough correlate of spectral centroid.

3.4 Half-duplex
While full-duplex audio enables real-time control via the

microphone, half-duplex allows a short audio segment to be
recorded and saved in memory while the application runs.
The audio segment can then be re-used in conjunction with
information from other sensors, including the current full-
duplex microphone input. We created some simple exam-
ples with two MicWvIn objects, one for full-duplex audio and
the other for standalone recording followed by playback.

One example records a few seconds of audio in no-playback
mode. The user can then switch to playback-mode and re-
peatedly play the recorded segment. However, it applies
the amplitude of the current (full-duplex) microphone in-
put to the previously recorded (half-duplex) segment being
replayed. This allows interactive control over which parts
of the repeating audio loop stand out each time it repeats.

A second example continues to replay the recorded audio
from the previous instrument, but at a fixed gain. To this

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

187

it adds the current microphone input, so that one hears the
repeating loop as well as any noise one is currently making
near the microphone. This gives the performer a way to
accompany himself in creating interactive music. Such an
instrument could also be modified to let the current micro-
phone input drive one of the instruments described earlier
or be otherwise processed before reaching the output stage.

Another example, the Fast-Forward, uses the previously
recorded audio samples along with camera input. In this
case, the amount by which the camera lens is covered con-
trols the speed at which the recorded loop is played. If not
covered at all, the samples are played at normal speed. If
the lens is slightly covered, every other sample is played,
while if it is fully covered, every fourth sample of the pre-
recorded segment is played. This example does not use full-
duplex audio at all, but allows the camera input to control
playback in a way that would be difficult if the samples to
play were not recorded in advance.

4. CONCLUSIONS
We presented the use of the microphone of mobile phones

as a generic sensor for mobile phone performance. The fi-
delity and dynamic range, along with the types of physical
effects that can be picked up via acoustic signals, make this
an interesting addition to the range of sensors available in
mobile devices for mobile music making. The microphone
is particularly interesting for picking up performance types
that are not easily accessible to mobile devices otherwise.
For example, the wind noise from blowing into the micro-
phone can be used to simulate the behavior of a simple
mouthpiece of a wind-instrument, or just a police whistle.

At the same time the sensor also allows for other types
of gestures to be detected, like striking. In addition, it
allows instant recording and manipulation of audio samples,
letting the samples heard in performance be directly related
to the venue.

The great advantage of microphone sensing in mobile de-
vices is their broad availability. While accelerometers are
only just emerging in contemporary high-end models of mo-
bile devices (Nokia’s 5500 and N95, Apple’s iPhone), micro-
phones are available in any programmable mobile phone and
offer signals of considerable quality.

One current limitation for interactive performance is the
limited performance of current devices when using floating
point arithmetic. This means that currently either all sig-
nal processing has to be implemented in fixed-point or one
has to tolerate only somewhat limited computational com-
plexity on processing algorithms. It’s very likely that this
will change with the evolution of smart mobile phones. Al-
ready Nokia’s N95 contains a vector floating point unit, and
the overall computational power is considerably higher than
the earlier Nokia 5500 model. One can expect this trend to
continue, making this limitation eventually obsolete.

Microphones offer yet another sensor capability that can
be used for mobile music performance and allow performers
to whistle, blow and tap their devices as a vocabulary of
musical expression.

5. REFERENCES
[1] P. Cook and G. Scavone. The Synthesis ToolKit

(STK). In Proceedings of the International Computer
Music Conference, Beijing, 1999.

[2] H. Do and F. Silverman. A method for locating
multiple sources using a frame of a large-aperture
microphone array data without tracking. In
Oriceedubgs of the IEEE Conference on Acoustics,

Speech, and Signal Processing ICASSP), Las Vegas,
NV, April 2008.

[3] G. Essl and S. O’Modhrain. Scrubber: An Interface
for Friction-induced Sounds. In Proceedings of the
Conference for New Interfaces for Musical
Expression, pages 70–75, Vancouver, Canada, 2005.

[4] G. Essl and M. Rohs. Mobile STK for Symbian OS.
In Proc. International Computer Music Conference,
pages 278–281, New Orleans, Nov. 2006.

[5] G. Essl and M. Rohs. ShaMus - A Sensor-Based
Integrated Mobile Phone Instrument. In Proceedings
of the International Computer Music Conference
(ICMC), Copenhagen, Denmark, August 27-31 2007.

[6] L. Gaye, L. E. Holmquist, F. Behrendt, and
A. Tanaka. Mobile music technology: Report on an
emerging community. In NIME ’06: Proceedings of
the 2006 conference on New Interfaces for Musical
Expression, pages 22–25, June 2006.

[7] G. Geiger. PDa: Real Time Signal Processing and
Sound Generation on Handheld Devices. In
Proceedings of the International Computer Music
Conference, Singapure, 2003.

[8] G. Geiger. Using the Touch Screen as a Controller for
Portable Computer Music Instruments. In Proceedings
of the International Conference on New Interfaces for
Musical Expression (NIME), Paris, France, 2006.

[9] T. Jehan, T. Machover, and M. Fabio. Sparkler: An
audio-driven interactive live computer performance
for symphony orchestra. In Proceedings of the
International Computer Music Conference, Göteborg,
Sweden, September 16-21 2002.

[10] T. Jehan and B. Schoner. An audio-driven, spectral
analysis-based, perceptual synthesis engine. In
Proceedings of the 110th Convention of the Audio
Engineering Society, Amsterdam, Netherlands, 2001.
Audio Engineering Society.

[11] S. O’Modhrain and G. Essl. PebbleBox and
CrumbleBag: Tactile Interfaces for Granular
Synthesis. In Proceedings of the International
Conference for New Interfaces for Musical Expression
(NIME), Hamamatsu, Japan, 2004.

[12] M. Rohs, G. Essl, and M. Roth. CaMus: Live Music
Performance using Camera Phones and Visual Grid
Tracking. In Proceedings of the 6th International
Conference on New Instruments for Musical
Expression (NIME), pages 31–36, June 2006.

[13] S. Strachan, P. Eslambolchilar, R. Murray-Smith,
S. Hughes, and S. O’Modhrain. GpsTunes:
Controlling Navigation via Audio Feedback. In
Proceedings of the 7th International Conference on
Human Computer Interaction with Mobile Devices &
Services, Salzburg, Austria, September 19-22 2005.

[14] A. Tanaka. Mobile Music Making. In NIME ’04:
Proceedings of the 2004 conference on New Interfaces
for Musical Expression, pages 154–156, June 2004.

[15] A. Tanaka, G. Valadon, and C. Berger. Social Mobile
Music Navigation using the Compass. In Proceedings
of the International Mobile Music Workshop,
Amsterdam, May 6-8 2007.

[16] K. van den Doel and D. K. Pai. The sounds of
physical shapes. Presence, 7(4):382–395, 1998.

[17] R. Wildes and W. Richards. Recovering material
properties from sound. In W. Richards, editor,
Natural Computation. MIT Press, Cambridge,
Massachusetts, 1988.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

188

