
Screen-Based Musical Interfaces as Semiotic Machines
Thor Magnusson

Creative Systems Lab
University of Sussex

BN1 9QN, East Sussex, UK
T.Magnusson@sussex.ac.uk

ABSTRACT

The ixi software project started in 2000 with the intention to

explore new interactive patterns and virtual interfaces in

computer music software. The aim of this paper is not to

describe these programs, as they have been described elsewhere

[14][15], but rather explicate the theoretical background that

underlies the design of these screen-based instruments. After an

analysis of the similarities and differences in the design of

acoustic and screen-based instruments, the paper describes how

the creation of an interface is essentially the creation of a

semiotic system that affects and influences the musician and the

composer. Finally the terminology of this semiotics is explained

as an interaction model.

Keywords

Interfaces, interaction design, HCI, semiotics, actors, OSC,

mapping, interaction models, creative tools.

1. INTRODUCTION
In our work with ixi software [14][15], we have concentrated

on creating abstract screen-based interfaces for musical

performance on computers. These are graphical user interfaces

(GUIs) that do not necessarily relate to established conventions

in interface design, such as using buttons, knobs and sliders, nor

do they necessarily refer to musical metaphors such as the score

(timeline), the keyboard (rational/discrete pitch organisation) or

linear sequencing (such as in step sequencers or arpeggiators).

Instead we represent musical structures using abstract objects

that move, rotate, blink/bang or interact. The musician controls

those objects as if they were parts of an acoustic instrument,

using the mouse, the keyboard or other control devices. We

have created over 15 of these instruments – each exploring new

modes of interactivity where some of the unique qualities of the

computer are utilised in fun, inspirational and innovative ways.

Qualities such as remembering the musician's actions, following

paths, interaction between agents, generativity, randomness,

algorithmic calculations and artificial intelligence; all things

that our beloved acoustic instruments are not very good at.

Over the course of our work, we have developed a loose and

informal language for these instruments – a semiotics that

suggest to the musician what the functionality of each interface

element is, and what it signifies in a musical context. Human

Computer Interface (HCI) research [2][3][17][1][6] is usually

con-centrated on the chain of meaning from the software

designer to the software user. The user is the receiver of

information and the aim of HCI is traditionally to make the

interaction between the two systems (the human and the

computer) intuitive, representational and task based (where the

tasks are based on real world tasks). What is lacking is a

stronger discussion of the situation where the computer is used

as a tool for artistic creation – an expressive instrument – and

not a device for preparing, organising or receiving information.

In artistic tools we have an important addition, where the

signifying chain has been reversed: the meaning is created by

the user, deploying a software to achieve some end goals, but

this very software is also a system of representational meanings,

thus influencing and coercing the artist into certain work

patterns.

Figure 1: StockSynth. Here the crosshair cursor serves as a

microphone that picks up sounds from the boxes that

represent sound samples. The mic has adjustable scope (the

circle). The boxes are moveable and the mic moves by

drawn or automatic trajectories or by dragging it with the

mouse.

2. A SHORT NOTE ON INSTRUMENTS
"Even simple physical instruments seem to hold more mystery

in their bodies than the most elaborate computer programs"

[10]

Both acoustic instruments and music software incorporate and

define the limits of what can be expressed with them. There are

special qualities found in both, but the struggle of designing,

building and mastering an acoustic instrument is different from

the endeavor of creating musical software. The acoustic

instrument is made of physical material that defines the

behaviour of it in the form of both tangible and aural feedback.

These material properties are external to our thought and are

something that we fight with when we design and learn to play

instruments. Such features or characteristics of the material

instrument are not to be found in software. Software is per

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

NIME 06, June 4-8, 2006, Paris, France.
Copyright remains with the author(s).

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

162

definition programmed (etymology: "pro" = before, "graphein"

= written); its functionality is prewritten by a designer or an

engineer and the decisions taken in the design process become

the defining qualities of the software, determining its expressive

scope.

Different languages are based on different paradigms and lead

to different types of approaches to solve a given problem. Those

who use a particular computer language learn to think in that

language and can see problems in terms of how a solution

would look in that language.
1
 [12]

This is not the place to go into the cognitive processes involved

with learning and playing an instrument. But we are faced with

an important question: what material (instruments) is the

computer musician composing for and where does he or she get

the ideas from? In other terms: where does the thinking (or

composing) of the computer musician or digital instrument

inventor take place? It happens most likely in the form and

structure of the programming language in which he or she is

working. The environment defines the possibilities and the

limitations of what can be thought. But what does it mean to

"learn to think in a language"? What are we gaining and what

are we sacrificing when we choose an instrument or a

programming environment? And what are the reasons for some

people preferring one environment for another?

Figure 2: GrainBox. It can be hard to create interfaces for

granular synthesis. The GrainBox is a suggestion how to

represent the complex parameters as boxes with X and Y

dimensions in 2D space and with connections to other

parameters such as reverb and random functions.

When musicians use software in their work, they have to shape

their work process according to the interface or structure of the

software. As with acoustic instruments software defines the

scope of potential expression. The musician is already tangled

in a web of structured thinking but the level of freedom or

expressiveness depends on the environment in which he or she

working.
2
 To an extent, the musical thinking takes place at the

level of the interface elements of the software itself.

It is misleading then to talk of thinking as of a 'mental activity'.

We may say that thinking is essentially the activity of operating

with signs. This activity is performed by the hand, when we

think by writing; by the mouth and larynx, when we think by

speaking; and if we think by imagining signs or pictures, I can

give you no agent that thinks. If then you say that in such cases

the mind thinks, I would only draw attention to the fact you are

using a metaphor, that here the mind is an agent in a different

sense from that in which the hand can be said to be the agent in

writing.

1
 Try to replace "language" with "instrument" in McCartney's paragraph

above – the same applies for musical instruments as well.

2
 From this perspective SuperCollider and Pure Data are arguably more

open and free than Logic, Protools or Reason, to name but a few.

If again we talk about the locality where thinking takes place

we have a right to say that this locality is the paper on which

we write or the mouth which speaks. And if we talk of the head

or the brain as the locality of thought, this is using the 'locality

of thinking' in a different sense. [21]

If here I am attempting to find the "locus" of musical

thinking/performing in both acoustic instruments and screen-

based digital instruments – a discussion that is much deeper

than can be delved into here – it is important to consider the

difference in embodiment and incorporated knowledge of the

player in those two types of instruments. When learning an

acoustic instrument, the motor memory does most of the job

and your learning "happens" as interaction with the body of the

instrument. Due to the material qualities of it, one can never

master an instrument, it always contains something unexplored,

some techniques that can be taken further and investigated.

With software however, it is more or less visual and procedural

memory that is involved, as software doesn't have a material

body that the musician learns to operate. The only “body” of

software is in the form of its interface elements, and they (as

opposed to the indicative nature of physical material) are

simple, contingent and often arbitrary design decisions.
3
 The

"body" of the software has to be created and it does not depend

upon any material qualities, but rather the style and history of

graphical user interface design.

3. HCI AND SEMIOTICS
Designing is essentially a semiotic act. Designing a digital

instrument or programming environment for music is to

structure a system of signs into a coherent whole that

incorporates some compositional ideology (or an effort to

exclude it). The goal is to provide the users with a system in

which they can express themselves and communicate their ideas

in a way that suits their work methods and sometimes provide

new ways of thinking and working. But what kind of a tool is

the computer and what kind of communication are we talking

about here?

3.1 Interaction Paradigms
We can roughly define three primary interaction paradigms in

computer software as: computer-as-tool, computer-as-partner,

and computer-as-medium. [6] Different research communities

address these paradigms. The HCI field investigates the

computer-as-tool paradigm but the attention is mainly on how

to design understandable and ergonomic software for the user

of the tool. What is lacking is a better understanding of

creativity itself and how creative and experimental minds use

software (and often have to misuse it to get their ideas across).

We have learned from user feedback that there seems to be a

general need for better sketching environments that can be

modified according to the needs of the user. An interesting fact

here is that many cutting-edge art works are created by hacking

or modifying software or simply creating one’s own tools.

There are schools of artists that respond to the limitations of

commercial software with their own software in the form of

software art.
4
 [11][16]

3 Often made by the wrong people: an engineer and not an ergonomist;

a graphic designer and not a musician.

4
 The www.runme.org repository is an excellent source for information

and examples of what is happening in the field of software art and

generative art. It is closely related to the ReadMe festival, which was
the first software art festival.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

163

3.2 The Semiotics of a Creative Tool
The most common of semiotic practises is to look at the

signifying channel from the sender to the receiver through some

medium such as signs, language, text, or film. [5][9] The

“work” here is a static construction that doesn't change after it

has been published or released.
5
 By contrast, computer-based

works are interactive and can be changed or modified after their

release either by users themselves or by updates. Interaction

becomes a new sign-feature.[2] Some studies have been done

on this new semiotic quality of the computer [1][2][3][7], but

very few in the field of music software or other creative

software.

In music software, the user is at the same time the receiver and

interpreter of information from the designers of the software

and the sender of information in the form of the music being

composed using the tool. This dual semiotic stance is important

in all tools (whether real or virtual) but becomes vital in

contingently designed tools such as music software. Music

software is a sign system in its own right, but the important

question here is: which are the relevant layers of signification

and communication and from where do the originate? This can

be analysed into strata of different practices. The hardware

designers, the programmers of the compilers, the language API

and the software itself, the designers of the interaction and the

programmers of the interface. A creative tool has history of

important design decisions all shaping its scope and potential.

This is a complex structure, but the user is faced with the

question: what is the meaning conveyed in the interface? And is

this system of signification not essentially of compositional

nature? Who took those decisions and by which criteria?

The contingency of design mentioned above in relation to the

digital medium is one of the most definable characteristic of it.

We don't have this “contingency problem” when designing

acoustic instruments as the properties of the material we work

with leads us in our design: closing a hole in a flute increases

the wavelength in the resonant tube and the tone deepens;

pressing the string against the fingerboard of a guitar –

shortening the wavelength – produces a note of higher pitch.

When designing screen-based computer interfaces we can

choose to imitate physical laws as known from the world of

acoustic instruments, we can draw from the reservoir of HCI

techniques or we can design something entirely new. It is here

that interface design, the interaction design, and mapping

becomes very important factor in the creation of interesting

screen-based instruments for the computer.

4. INTERFACE ELEMENTS IN IXI
Most modern operating systems are graphical or allow for a

graphical front end. The WIMP (Window, Icon, Menu, Pointer)

interface [4] has become a standard practice and we have

become used to the direct manipulation [20] of graphical

objects. The traditional method is to translate work practices

from the real world into the realm of the computer, and thus we

get the folders, the documents, the desktop and the trash. In

music applications we get representations of keyboards, buttons

knobs and sliders, rack effect units and cables. This is also

suitable where the aim is to translate studio work practices into

the virtual studio. But when we are creating new instruments

using the new signal processing capabilities and artificial

intelligence of the computer, there might not exist any physical

5
 Post-structuralist thought has rightly pointed out how interpretations

of the work change in different times and cultures, but the work itself
doesn't change - only people's interpretation and reception of it.

phenomena that we can use as source for our interface

metaphors.
6

4.1 Interaction Models
Each of the ixi applications is a prototype or a suggestion and it

explores a specific mode of interaction. The whole of our

software can be grouped into a specific kind of interaction

model: a language, a semiotics or a design ideology that

informs and en-forms the work. An interaction model can be

defined as more operational than an interaction paradigm

(computer as tool, partner or medium). [6] It can be evaluated

according to the descriptive, the evaluative and the generative

power of the model. These dimensions of evaluation are all

important when creating an interaction model. The descriptive

power is the ability to describe a significant range of existing

interfaces; the evaluative power helps us to assess multiple

design alternatives; and the generative power is the ability of

the model to inspire and lead designers to create new designs

and solutions.

4.2 Interaction Instruments
It is the generative aspect of ixi's interaction model that is the

subject here. Beaudouin-Lafon's definition of instrumental

interaction [7] is the closest description the author has found

that relates to our work with ixi software. The interaction

instrument is a tool that interfaces the user with the object of

interest. A scrollbar is an example of such instrument as it gives

the user the ability to change the state/view of the document. A

pen, brush or a selection tool in a graphics package is also a

type of such instrument.

There are three design principles that define the methodology of

instrumental interaction: reification - the process by which

concepts are turned into objects; polymorphism - the property

that enables a single command to be applicable to objects of

different types; reuse - the storing of previous input or output

for another use. When an ixi application combines all three

design principles into a successful interface, we have what we

could call a semiotic machine. The interface is multifunctional
and can be used in a variety of different contexts.

4.3 The Terminology of ixi’s semantics
As explained in earlier papers, [14][15] most of the ixi software

applications are controllers that send and receive OSC (Open

Sound Control) [23] information to sound engines written in

other environments such as SuperCollider [12] or Pure Data

[17]. We separate the interface from the sound engine in order

to be able to reuse the control structures of the abstract interface

in other contexts, for example allowing a sequencing interface

to control parameters in synthesis if the user configures it so.

These controllers are all made from a common ideology or an

interaction model that we see as a semiotic system.

In our work with ixi software, the fundamental attention has

been on the interaction design and not the interface design. The

design of interface elements is often highly (but not

exclusively) aesthetic and depending on taste, whereas the

interaction design deals with the fundamental structure and

ergonomic idea of the software. In the example of SpinDrum

[14], for example, the wheels contain pedals controlling beats

per cycle, the size of the wheel signifies the volume and the

6
 As we can derive from the Peircian semiotics, an interface object can

be represented in various ways: iconically (where the representation

is based on resemblance to an object), indexically (where the

representation is influenced by an object) or symbolically (where the
representation is based on convention).

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

164

colour accounts for which sound is attached to the object. Here

the interaction design clearly affects the interface design (size,

number of pedals, colour), but the shape of the pedals (whether

a square, a circle or a triangle) is simply an aesthetic decision

and of little general importance.

Figure 3: SpinDrum. Each wheel contains from 1 to 10

pedals. The wheels rotate in various speeds, and when a

pedal hits top position (12 o’clock) it triggers the sample or

sends out OSC info to the soundengine. The X and Y

location of the wheels can affect parameters such as pitch

and panning.

4.3.1 Actors
The ixi interfaces are pattern generating machines with cogs

and bolts of varied significance. To sum up the basic design

ideas of ixi software we could say that it was the reification of

musical ideas into abstract graphical objects as control

mechanisms that act in time.
7
 We call these abstract objects

actors,
8
 as they are graphical representations of temporal

processes that act, enact and react to the user, to each other or

the system itself in a complex network of properties, relations

and teleology (desired states or end goals). Beaudouin-Lafon

calls graphical interface tools "interaction instruments", but we

cannot use that metaphor as an ixi application is a musical

instrument on it's own but also because of the different nature

of the interface units of ixi software. The feature under

discussion here is the difference musical applications have from

the ergonomically "single-threaded" or serial task-processing

applications used for painting, text editing, programming, video

editing or in architecture. In contrast to these applications, a

music application is multi-threaded or parallel, i.e. there are

many processes, streams, layers or channels that run

concurrently in every composition or performance, all

controlled by the user, but, in the case of ixi, usually only one at

a time.
9
-

10

7
 Musical idea here meaning any pattern generating structure.

8
 We thought about calling the active interface elements agents but it

was too confusing as the term has very strong connotations in

computer science, especially within the field of artificial intelligence.

9
 Another fact that divides those types of software is that the painting

software, the video software or the 3D package are not packages that
are used in live performance.

10
 This is of course what people are working with in the research field

often known as NIME (New Interfaces for Musical Expression

www.nime.org) where building physical interfaces to control sound

The interface units that we call actors - such as a picker, a

spindrum or a virus - are not instruments that the musician uses

for some task and then chooses another instrument for the next

task. The actors in the ixi software applications are put into use

at some point in time and they continue working in a temporal

flow (rotating, moving through a trajectory or interacting) until

the musician decides to stop or pause their activities.

4.3.2 Context
All actors perform their task in a context. They are graphically

represented in a two- or three-dimensional space on the screen

and their location might typically influence their properties. The

actors move, rotate or blink in this space and are therefore both

spatially and temporally active units. The space can have

qualities such as temperature, gravity, brightness, etc. which are

all qualities that could affect the actor’s behaviour or it can

contain other actors of different type that influence the

behaviour of the message sending actors. Feedback from users

of ixi software has shown us that people find the metaphor of an

actor presented in time and space useful to represent musical

actions and ideas. What the feedback also shows is that people

intuitively understand the metaphor of having actors on a stage

that perform some tasks that they – the directors of the piece –

are controlling.

Figure 4: Connector. This software uses generative

algorithms to decide where actors travel within a network of

connectors. There are probability charts that decide the

next move of an actor and when it enters a connector it

triggers a MIDI note and/or a sound sample that is a

property of the connector.

4.3.3 Network
When talking about the context and the environment of these

actors, we must note the fact that the interface elements are not

the only actors in the context of an ixi instrument: the user is

one actor, the control hardware (a mouse, keyboard, sensor or

controller), the soundcard, the speakers and other

communication such as virtual audio cables, MIDI or OSC

messages. The whole context of musical action and reaction is

the space of the actor, a space in which the heterogeneous

network of musical performance takes place. The meaning of

the actor is its functionality within the control context and the

mapping context. The actor has as many dimensions as it has

numbers of control parameters and connections for receiving or

sending messages.

on the computer allows for multi-parameter mapping to one sound-
engine.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

165

Figure 5: ParaSpace. This application interfaces with audio

effects written in SuperCollider (but can talk to any

software that supports OSC). Each audio effect has variable

number of parameters and they are represented as small

boxes in the control interface of ParaSpace. The point here

is that the parameters interact on the interface level with

automation, artificial life and artificial intelligence.

To clarify this idea of actors being all the elements that affect

the interaction in an instrument, let us have a look at the

software Connector. Here actors move in a system of

connectors (a plumbing-like system) and trigger sound samples

or MIDI notes that are properties of the connectors. The

connectors are actors themselves as they are the receivers of an

action and contain the information that yields the sound. It is

through the interaction of all the actors and their properties that

interaction takes place – interaction between elements within

the instrument and also with the musician using the instrument

– and this interaction is simply the automation that controls the

various parts of the music set into motion. In StockSynth

(Figure 1) the microphone is one such actor (with its properties

of trajectory and scope) that interacts with the sound objects

that contain the information about the sound and its properties.

4.3.4 Semiotic elements and mapping
The actors and the contexts in which they function are all

elements in a semiotic language. This language has dialects or

rather idiolects (each application is unique) where the meaning

of an element can change as in Wittgenstein's concept of the

usage as the word’s meaning [15][22] or as in the Saussurian

conception of the lack of natural connection between a signifier

and the signified.
11

 [19] We provide a semiotics or suggest

language games where the behaviour of an actor maps onto

some parameters in a sound engine. For example, vertical

location of an actor could signify the pitch of a tone or playback

rate of a sample. Size could mean amplitude, rotation

triggering, and direction could mean a tendency for some

action. But, it could also signify something entirely different as

the controllers are open and it is up to the musician to map the

actor's behaviour onto a parameter in the sound engine.

5. CONCLUSION
This paper has tried to show how the materials we work with

when we design instruments (digital or acoustic) are the

11
 For Saussure, the meaning of signs is relational rather than

referential, i.e. the meaning lies in their systematic relation to

other signs in the semiotic system and not by direct reference
to material things, for example.

foundation for what can be expressed with the instrument.

Whereas the expressive possibilities of an acoustic instrument

are highly dependent upon the physical material it is built out of

(wood, iron, strings, etc.), the situation is very different when

we create digital instruments, especially screen-based. We have

shown some examples of the semiotic system we are working

towards in our work with ixi software and suggested a

terminology of actors, context and network to better understand

and modularise the interaction and interface design of virtual

instruments. We have also illustrated how an interface can have

its own meaning system independent of its relationship to the

sound-engine, where the interactive patterns of an instrument

can be mapped in many different ways onto the parameters of

the sound-engine.

6. FUTURE WORK
Future plans involve exploring the dimensional spaces of the

screen-based actors as the interface for musical interaction. The

computer is becoming quite good at imitating the properties of

acoustic instruments but it excels as an interesting instrument

on its own where interaction is designed from the premise of

the qualities of the computer and not by imitation of real world

objects.

Our work involves experimenting in creating semiotic systems

that can be taken further and extended into new dialects and

systems of meaning. This system is not exclusive to one type of

applications, but can rather be seen as a semiotic toolbox from

which elements can be taken and reused in new contexts.

Computer music software is a highly interesting area in the field

of HCI as it is used in live performances and should contain

depth that can be explored and practiced, thus allowing for

musical virtuosity. In semiotic interfaces such as the ixi

software there is always the filament of concurrent mappings or

parallel streams of musical events happening at any one time.

The temporal aspect of computer music software makes it also

quite unique in relation to other types of software. Facing these

incredible demands and challenges of music software we feel

that we are just starting our journey into the possibilities of new

meaning systems, metaphors, pattern generators and control of

synthesis techniques through the creation of semiotic machines

in the form of interfaces.

7. ACKNOWLEDGEMENTS
The ixi software project (www.ixi-software.net) is a

collaboration between Enrike Hurtado Mendieta, Thor

Magnusson and various musicians and artists that are involved

with our work. I would like to thank Chris Thornton of

University of Sussex, Marcelo Wanderley and the people at the

IDMIL Lab at McGill University, Montreal and Julian

Rohrhuber at the University of Cologne for good discussions

and important feedback for this paper.

8. REFERENCES

[1] Andersen, Peter, B. & May, Michael. "Instrument
Semiotics" in Information, organisation and
technology. Studies in organisational semiotics. (eds.
Liu, Kecheng; Clarke, Rodney J.; Andersen, Peter B.;
Stamper, Ronald K.). Kluwer:
Boston/Dordrecht/London. 2001: 271-298.

[2] Andersen, Peter, B. "What semiotics can and cannot do
for HCI" in Knowledge Based Systems. Elsevier: 2001.

[3] Andersen, Peter, B. "Computer semiotics" in
Scandinavian Journal of Information systems. Vol. 4:
3-30. Copenhagen, 1992.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

166

[4] Apple Computer Inc. Human Interface Guidelines: The

Apple Desktop Interface. Boston: Addison-Wesley, 1987.

[5] Barthes, Roland. Mythologies. London: Paladin, 1972.

[6] Beaudouin-Lafon, Michel. "Designing Interaction, not
Interfaces" in AVI Proceedings, ACM: Gallipoli, 2004

[7] Beaudouin-Lafon, Michel. "Instrumental Interaction:
An Interaction Model for Designing Post-WIMP User
Interfaces" in Proceedings of ACM Human Factors in
Computing systems (CHI 2000), The Hague: ACM
Press, 2000.

[8] Beaudouin-Lafon, Michel. "Reification, Polymorphism
and Reuse: Three Principles for Designing Visual
Interfaces" in in AVI Proceedings, ACM: Palermo, 2000

[9] Eco, Umberto. A Theory of Semiotics. London: Macmillan,

1976.

[10] Edens, Aden. Sound Ideas: Music, Machines, and

Experience. Minneapolis: University of Minnesoda Press,

2005.

[11] Gohlke, Gerrit. (ed.) Software Art - A Reportage about

Source Code. Berlin: The Media Arts Lab, 2003.

[12] McCartney, James. "A Few Quick Notes on
Opportunities and Pitfalls of the Application of
Computers in Art and Music" in Ars Electronica, 2003.

[13] McCartney, James. "Rethinking the Computer Music

Language: SuperCollider" in Computer Music Journal,

26:4, pp. 61–68, Winter, 2002.

[14] Magnusson, Thor. "ixi software: The Interface as
Instrument" in Proceedings of NIME 2005. Vancouver:

University of British Columbia, 2005.

[15] Magnusson, Thor. "ixi software: Open Controllers for
Open Source Software" in Proceedings of ICMC 2005.

Barcelona: University of Pompeu Fabra, 2005.

[16] Magnusson, Thor. “Processor Art: Currents in the Process

Orientated Works of Generative and Software Art”,

Copenhagen: 2002. www.ixi-software.net/thor

[17] Nadin, Mihai. “Interface Design: A Semiotic Paradigm” in

Semiotica 69-3/4. Amsterdam: Mouton De Groyer, 1988.

[18] Puckette, Miller. "Pure Data." in Proceedings of

International Computer Music Conference. San Francisco:

International Computer Music Association, pp. 269-272,

1996.

[19] Saussure, Ferdinand de. Course in General Linguistics.

London: Duckworth, 1983. p. 121.

[20] Shneiderman, Ben. "Direct manipulation: a step beyond

programming languages," IEEE Computer 16(8) (August

1983), 57-69

[21] Wittgenstein, Ludwig. The Blue And Brown Books,
Oxford: Blackwell, 1993. p. 6.

[22] Wittgenstein, Ludwig. Philosophical Investigations,
Oxford: Blackwell, 1994.

[23] Wright, M; Freed, A; Lee, A; Madden, A. and Momeni,
A. "Open Sound Control: State of the Art 2003" in
Proceedings of NIME 2003. Montreal, Canada. 2003.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

167

